Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media

被引:2
|
作者
Grombacher, Denys [1 ]
Nordin, Matias [1 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
关键词
diffusion; finite difference; porous media; Laplace operator; NARROW-PULSE APPROXIMATION; RESTRICTED DIFFUSION; FIELD GRADIENT; SPIN-ECHO; NMR DIFFUSION; LAPLACIAN EIGENFUNCTIONS; BLOCH EQUATIONS; MOLECULES; PROPAGATORS; RELAXATION;
D O I
10.1002/cmr.a.21349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch-Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. (c) 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160-180, 2015.
引用
收藏
页码:160 / 180
页数:21
相关论文
共 50 条
  • [41] MODELING OF NUCLEAR MAGNETIC RESONANCE SURFACE RELAXATION IN POROUS MEDIA WITH IMPROVED CALCULATIONS OF INTERFACIAL ABSORPTION PROBABILITY AND POROUS SURFACE AREA
    Huang, Feng
    Liu, Xuefeng
    JOURNAL OF POROUS MEDIA, 2019, 22 (02) : 183 - 193
  • [42] The Effect of Diffusion in Internal Gradients on Nuclear Magnetic Resonance Transverse Relaxation Measurements
    Muncaci, S.
    Boboia, S.
    Ardelean, I.
    PROCESSES IN ISOTOPES AND MOLECULES (PIM 2013), 2013, 1565 : 133 - 136
  • [43] The anomalous effect of surface diffusion on the nuclear magnetic resonance signal in restricted geometry
    Edirisinghe, E. P. N. S.
    Apalkov, V. M.
    Cymbalyuk, G. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (14)
  • [44] Diffusion Pore Imaging by Hyperpolarized Xenon-129 Nuclear Magnetic Resonance
    Kuder, Tristan Anselm
    Bachert, Peter
    Windschuh, Johannes
    Laun, Frederik Bernd
    PHYSICAL REVIEW LETTERS, 2013, 111 (02)
  • [45] Nuclear magnetic resonance measurement of hydrodynamic dispersion in porous media: preasymptotic dynamics, structure and nonequilibrium statistical mechanics
    Codd, S. L.
    Seymour, J. D.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2012, 60 (02)
  • [46] Grain Sizing in Porous Media using Bayesian Magnetic Resonance
    Holland, D. J.
    Mitchell, J.
    Blake, A.
    Gladden, L. F.
    PHYSICAL REVIEW LETTERS, 2013, 110 (01)
  • [47] Magnetic resonance of 3He nuclei in porous media
    Klochkov, A. V.
    Tagirov, M. S.
    LOW TEMPERATURE PHYSICS, 2015, 41 (01) : 50 - 57
  • [48] Application of Low-Field Nuclear Magnetic Resonance (LFNMR) in Characterizing the Dissociation of Gas Hydrate in a Porous Media
    Zhang, Yongchao
    Liu, Lele
    Wang, Daigang
    Chen, Pengfei
    Zhang, Zhun
    Meng, Qingguo
    Liu, Changling
    ENERGY & FUELS, 2021, 35 (03) : 2174 - 2182
  • [49] In Situ Monitoring of Diffusion of Guest Molecules in Porous Media Using Electron Paramagnetic Resonance Imaging
    Spitzbarth, Martin
    Lemke, Tobias
    Drescher, Malte
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (115):
  • [50] Transport and Adsorption of Nano-Colloids in Porous Media Observed by Magnetic Resonance Imaging
    Lehoux, A. P.
    Faure, P.
    Michel, E.
    Courtier-Murias, D.
    Rodts, S.
    Coussot, P.
    TRANSPORT IN POROUS MEDIA, 2017, 119 (02) : 403 - 423