Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media

被引:2
|
作者
Grombacher, Denys [1 ]
Nordin, Matias [1 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
关键词
diffusion; finite difference; porous media; Laplace operator; NARROW-PULSE APPROXIMATION; RESTRICTED DIFFUSION; FIELD GRADIENT; SPIN-ECHO; NMR DIFFUSION; LAPLACIAN EIGENFUNCTIONS; BLOCH EQUATIONS; MOLECULES; PROPAGATORS; RELAXATION;
D O I
10.1002/cmr.a.21349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch-Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. (c) 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160-180, 2015.
引用
收藏
页码:160 / 180
页数:21
相关论文
共 50 条
  • [31] Magnetic resonance for fluids in porous media at the University of Bologna
    Fantazzini, P
    MAGNETIC RESONANCE IMAGING, 2005, 23 (02) : 125 - 131
  • [32] Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements
    Sham, E.
    Mantle, M. D.
    Mitchell, J.
    Tobler, D. J.
    Phoenix, V. R.
    Johns, M. L.
    JOURNAL OF CONTAMINANT HYDROLOGY, 2013, 152 : 35 - 43
  • [33] Nuclear magnetic resonance diffusion pore imaging: Experimental phase detection by double diffusion encoding
    Demberg, Kerstin
    Laun, Frederik Bernd
    Windschuh, Johannes
    Umathum, Reiner
    Bachert, Peter
    Kuder, Tristan Anselm
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [34] Measurement of Gas Diffusion Coefficient in Liquid-Saturated Porous Media Using Magnetic Resonance Imaging
    Song, Yongchen
    Hao, Min
    Zhao, Yuechao
    Zhang, Liang
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 88 (12) : 2265 - 2270
  • [35] Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging
    Yongchen Song
    Min Hao
    Yuechao Zhao
    Liang Zhang
    Russian Journal of Physical Chemistry A, 2014, 88 : 2265 - 2270
  • [36] Implementation of mixed methods as finite difference methods and applications to nonisothermal multiphase flow in porous media
    Chen, Zhang-xin
    Yu, Xi-jun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 281 - 294
  • [37] Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials
    Faux, D. A.
    Cachia, S. -H. P.
    McDonald, P. J.
    Bhatt, J. S.
    Howlett, N. C.
    Churakov, S. V.
    PHYSICAL REVIEW E, 2015, 91 (03)
  • [38] Porous Media Microstructure Determines the Diffusion of Active Matter: Experiments and Simulations
    Modica, Kevin J.
    Xi, Yuchen
    Takatori, Sho C.
    FRONTIERS IN PHYSICS, 2022, 10
  • [39] Effects of finite-width pulses in the pulsed-field gradient measurement of the diffusion coefficient in connected porous media
    Zielinski, LJ
    Sen, PN
    JOURNAL OF MAGNETIC RESONANCE, 2003, 165 (01) : 153 - 161
  • [40] Finite-difference modeling of wave propagation and diffusion in poroelastic media
    Wenzlau, Fabian
    Mueller, Tobias M.
    GEOPHYSICS, 2009, 74 (04) : T55 - T66