Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media

被引:2
|
作者
Grombacher, Denys [1 ]
Nordin, Matias [1 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
关键词
diffusion; finite difference; porous media; Laplace operator; NARROW-PULSE APPROXIMATION; RESTRICTED DIFFUSION; FIELD GRADIENT; SPIN-ECHO; NMR DIFFUSION; LAPLACIAN EIGENFUNCTIONS; BLOCH EQUATIONS; MOLECULES; PROPAGATORS; RELAXATION;
D O I
10.1002/cmr.a.21349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch-Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. (c) 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160-180, 2015.
引用
收藏
页码:160 / 180
页数:21
相关论文
共 50 条
  • [21] Restricted diffusion effects on nuclear magnetic resonance DT2 maps
    Luo, Zhi-Xiang
    Paulsen, Jeffrey
    Vembusubramanian, M.
    Song, Yi-Qiao
    GEOPHYSICS, 2015, 80 (02) : E41 - E47
  • [22] NUMERICAL APPROACH TO SIMULATE DIFFUSION MODEL OF A FLUID-FLOW IN A POROUS MEDIA
    Aghdam, Yones Esmaeelzade
    Farnam, Behnaz
    Jafari, Hosein
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S255 - S261
  • [23] Investigating the effect of internal gradients on static gradient nuclear magnetic resonance diffusion measurements
    Fay, Emily L.
    Grombacher, Denys J.
    Knight, Rosemary J.
    GEOPHYSICS, 2017, 82 (05) : D293 - D301
  • [24] Nuclear magnetic relaxation of liquids in porous media
    Korb, J-P
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [25] Probe Molecules for Pulsed-Field-Gradient Diffusion Nuclear Magnetic Resonance Experiments on Micelles
    Lingwood, Mark D.
    Schepergerdes, Benjamin J.
    Hermosillo, Deja-Monae T.
    Delgado, Jalissa N.
    Sanders, Kaya P.
    JOURNAL OF SURFACTANTS AND DETERGENTS, 2020, 23 (02) : 319 - 325
  • [26] Ultrafast diffusion exchange nuclear magnetic resonance
    Mankinen, Otto
    Zhivonitko, Vladimir V.
    Selent, Anne
    Mailhiot, Sarah
    Komulainen, Sanna
    Prisle, Nonne L.
    Ahola, Susanna
    Telkki, Ville-Veikko
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [27] A new fractal model for porous media based on low-field nuclear magnetic resonance
    Qiu, Shuxia
    Yang, Mo
    Xu, Peng
    Rao, Binqi
    JOURNAL OF HYDROLOGY, 2020, 586 (586)
  • [28] STUDY ON WEAK GEL'S MOBILITY IN POROUS MEDIA USING NUCLEAR MAGNETIC RESONANCE TECHNIQUE
    Hua, Shuai
    Di, Qinfeng
    Wang, Wenchang
    Yang, Peiqiang
    Zhang, Jingnan
    Ye, Feng
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2018, 9 (01) : 13 - 20
  • [29] Measuring miscible fluid displacement in porous media with magnetic resonance imaging
    Muir, Colleen E.
    Petrov, Oleg V.
    Romanenko, Konstantin V.
    Balcom, Bruce J.
    WATER RESOURCES RESEARCH, 2014, 50 (03) : 1859 - 1868
  • [30] Saturation-dependent nuclear magnetic resonance relaxation of fluids confined inside porous media withmicrometer-sized pores
    Simina, Marius
    Nechifor, Ruben
    Ardelean, Ioan
    MAGNETIC RESONANCE IN CHEMISTRY, 2011, 49 (06) : 314 - 319