Finite difference diagonalization to simulate nuclear magnetic resonance diffusion experiments in porous media

被引:2
|
作者
Grombacher, Denys [1 ]
Nordin, Matias [1 ]
机构
[1] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
关键词
diffusion; finite difference; porous media; Laplace operator; NARROW-PULSE APPROXIMATION; RESTRICTED DIFFUSION; FIELD GRADIENT; SPIN-ECHO; NMR DIFFUSION; LAPLACIAN EIGENFUNCTIONS; BLOCH EQUATIONS; MOLECULES; PROPAGATORS; RELAXATION;
D O I
10.1002/cmr.a.21349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A finite difference approach for computing Laplacian eigenvalues and eigenvectors in discrete porous media is derived and used to approximately solve the Bloch-Torrey equations. Neumann, Dirichlet, and Robin boundary conditions are considered and applications to simulate nuclear magnetic resonance diffusion experiments are shown. The method is illustrated with MATLAB examples and computational tests in one and two dimensions and the extension to three dimensions is outlined. (c) 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part A 44A: 160-180, 2015.
引用
收藏
页码:160 / 180
页数:21
相关论文
共 50 条
  • [1] Nuclear magnetic resonance diffusion with surface relaxation in porous media
    Valfouskaya, A
    Adler, PM
    Thovert, JF
    Fleury, M
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, 295 (01) : 188 - 201
  • [2] Determination of the Defining Boundary in Nuclear Magnetic Resonance Diffusion Experiments
    Laun, Frederik Bernd
    Kuder, Tristan Anselm
    Semmler, Wolfhard
    Stieltjes, Bram
    PHYSICAL REVIEW LETTERS, 2011, 107 (04)
  • [3] Spatio-temporal anomalous diffusion in heterogeneous media by nuclear magnetic resonance
    Palombo, M.
    Gabrielli, A.
    De Santis, S.
    Cametti, C.
    Ruocco, G.
    Capuani, S.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (03)
  • [4] A finite difference method with periodic boundary conditions for simulations of diffusion-weighted magnetic resonance experiments in tissue
    Russell, Greg
    Harkins, Kevin D.
    Secomb, Timothy W.
    Galons, Jean-Philippe
    Trouard, Theodore P.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (04) : N35 - N46
  • [5] Magnetic Resonance of Porous Media (MRPM): A perspective
    Song, Yi-Qiao
    JOURNAL OF MAGNETIC RESONANCE, 2013, 229 : 12 - 24
  • [6] Magnetic Resonance Characterization of Porous Media Using Diffusion through Internal Magnetic Fields
    Cho, Hyung Joon
    Sigmund, Eric E.
    Song, Yiqiao
    MATERIALS, 2012, 5 (04) : 590 - 616
  • [7] Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media
    Mitchell, J.
    Chandrasekera, T. C.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (22)
  • [8] Probing Structural Compositions of Porous Media with Two-dimensional Nuclear Magnetic Resonance
    Liu, Huabing
    Xiao, Lizhi
    Yu, Huijun
    Li, Xin
    Guo, Baoxin
    Zhang, Zongfu
    Zong, Fangrong
    Anferov, Vladimir
    Anferova, Sofia
    APPLIED MAGNETIC RESONANCE, 2013, 44 (05) : 543 - 552
  • [9] Three-dimensional imaging of pore water diffusion and motion in porous media by nuclear magnetic resonance imaging
    Herrmann, KH
    Pohlmeier, A
    Gembris, D
    Vereecken, H
    JOURNAL OF HYDROLOGY, 2002, 267 (3-4) : 244 - 257
  • [10] Magnetic resonance in porous media: forty years on
    Packer, KJ
    MAGNETIC RESONANCE IMAGING, 2003, 21 (3-4) : 163 - 168