Beau bounds for multicritical circle maps

被引:10
作者
Estevez, Gabriela [1 ]
de Faria, Edson [2 ]
Guarino, Pablo [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Fed Fluminense, Inst Matemat & Estat, Rua Prof Marcos Waldemar de Freitas Reis S-N, BR-24210201 Niteroi, RJ, Brazil
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2018年 / 29卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Real bounds; Multicritical circle maps; Quasisymmetric rigidity; Dynamical partitions; RIGIDITY; RENORMALIZATION; DIFFEOMORPHISMS; CONJUGATION;
D O I
10.1016/j.indag.2017.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : S-1 -> S-1 be a C-3 homeomorphism without periodic points having a finite number of critical points of power-law type. In this paper we establish real a-priori bounds, on the geometry of orbits of f, which are beau in the sense of Sullivan, i.e. bounds that are asymptotically universal at small scales. The proof of the beau bounds presented here is an adaptation, to the multicritical setting, of the one given by the second author and de Melo in de Faria and de Melo (1999), for the case of a single critical point. (C) 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:842 / 859
页数:18
相关论文
共 27 条
[1]  
[Anonymous], 1997, CONTINUED FRACTIONS
[2]  
Arnold VI., 1961, IZV AKAD NAUK SSSR M, V25, P21
[3]   On rigidity of critical circle maps [J].
Avila, Artur .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (04) :611-619
[4]   Rigidity of critical circle mappings II [J].
De Faria, E ;
De Melo, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :343-370
[5]  
de Faria E., 1999, J. Eur. Math. Soc, V1, P339, DOI [10.1007/s100970050011, DOI 10.1007/S100970050011]
[6]  
deMelo W., 1993, One-Dimensional Dynamics, V25
[7]   REAL BOUNDS AND QUASISYMMETRIC RIGIDITY OF MULTICRITICAL CIRCLE MAPS [J].
Estevez, Gabriela ;
De Faria, Edson .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (08) :5583-5616
[8]  
Guarino P., 2012, THESIS
[9]  
Guarino P., ARXIV151102792
[10]   Rigidity of smooth critical circle maps [J].
Guarino, Pablo ;
de Melo, Welington .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (06) :1729-1783