Gravitino Fields in Schwarzschild Black Hole Spacetimes

被引:11
作者
Chen, C. -H. [1 ]
Cho, H. T. [1 ]
Cornell, A. S. [2 ,3 ]
Harmsen, G. [2 ,3 ]
Naylor, Wade [4 ,5 ]
机构
[1] Tamkang Univ, Dept Phys, Taipei, Taiwan
[2] Univ Witwatersrand, Sch Phys, Natl Inst Theoret Phys, ZA-2050 Johannesburg, South Africa
[3] Univ Witwatersrand, Mandelstam Inst Theoret Phys, ZA-2050 Johannesburg, South Africa
[4] Osaka Univ, Int Coll, Toyonaka, Osaka 5600043, Japan
[5] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan
基金
新加坡国家研究基金会;
关键词
QUASI-NORMAL MODES; PERTURBATIONS;
D O I
10.6122/CJP.20150511
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in a Schwarzschild background. The radial equations of the corresponding gauge invariant variable obtained are shown to be the same as in the Newman-Penrose formalism. These equations are then applied to the evaluation of the quasinormal mode frequencies, as well as the absorption probabilities of the gravitino field scattering in this background.
引用
收藏
页数:19
相关论文
共 38 条
[1]   Large N field theories, string theory and gravity [J].
Aharony, O ;
Gubser, SS ;
Maldacena, J ;
Ooguri, H ;
Oz, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4) :183-386
[2]  
[Anonymous], 2014, QUEST J, DOI DOI 10.1371/J0URNAL.P0NE.0085469
[3]   Quasinormal modes of black holes and black branes [J].
Berti, Emanuele ;
Cardoso, Vitor ;
Starinets, Andrei O. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (16)
[4]   On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces [J].
Camporesi, R ;
Higuchi, A .
JOURNAL OF GEOMETRY AND PHYSICS, 1996, 20 (01) :1-18
[5]   QUASI-NORMAL MODES OF SCHWARZSCHILD BLACK-HOLE [J].
CHANDRASEKHAR, S ;
DETWEILER, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1975, 344 (1639) :441-452
[6]  
Chandrasekhar S., 1983, The Mathematical Theory of Black Holes
[7]  
Chen C., IN PRESS
[8]   Split fermion quasinormal modes [J].
Cho, H. T. ;
Cornell, A. S. ;
Doukas, Jason ;
Naylor, Wade .
PHYSICAL REVIEW D, 2007, 75 (10)
[9]   A New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration Method [J].
Cho, H. T. ;
Cornell, A. S. ;
Doukas, Jason ;
Huang, T. -R. ;
Naylor, Wade .
ADVANCES IN MATHEMATICAL PHYSICS, 2012, 2012
[10]   Black hole quasinormal modes using the asymptotic iteration method [J].
Cho, H. T. ;
Cornell, A. S. ;
Doukas, Jason ;
Naylor, Wade .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (15)