Wireless Traffic Prediction With Scalable Gaussian Process: Framework, Algorithms, and Verification

被引:143
作者
Xu, Yue [1 ]
Yin, Feng [2 ,3 ]
Xu, Wenjun [1 ]
Lin, Jiaru [1 ]
Cui, Shuguang [4 ,5 ]
机构
[1] Beijing Univ Posts & Telecommun, Key Lab Universal Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[3] Shenzhen Res Inst Big Data, Shenzhen 518172, Peoples R China
[4] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[5] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen Res Inst Big Data, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
C-RANs; Gaussian processes; parallel processing; ADMM; cross-validation; machine learning; wireless traffic; MODELS;
D O I
10.1109/JSAC.2019.2904330
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The cloud radio access network (C-RAN) is a promising paradigm to meet the stringent requirements of the fifth generation (SG) wireless systems. Meanwhile, the wireless traffic prediction is a key enabler for C-RANs to improve both the spectrum efficiency and energy efficiency through load-aware network managements. This paper proposes a scalable Gaussian process (GP) framework as a promising solution to achieve large-scale wireless traffic prediction in a cost-efficient manner. Our contribution is three-fold. First, to the hest of our knowledge, this paper is the first to empower GP regression with the alternating direction method of multipliers (ADMM) for parallel hyper-parameter optimization in the training phase, where such a scalable training framework well balances the local estimation in baseband units (BBUs) and information consensus among BBUs in a principled way for large-scale executions. Second, in the prediction phase, we fuse local predictions obtained from the BBUs via a cross-validation-based optimal strategy, which demonstrates itself to be reliable and robust for general regression tasks. Moreover, such a cross-validation-based optimal fusion strategy is built upon a well acknowledged probabilistic model to retain the valuable closed-form GP inference properties. Third, we propose a C-RAN-based scalable wireless prediction architecture, where the prediction accuracy and the time consumption can be balanced by tuning the number of the BBUs according to the real-time system demands. The experimental results show that our proposed scalable GP model can outperform the state-of-the-art approaches considerably, in terms of wireless traffic prediction performance.
引用
收藏
页码:1291 / 1306
页数:16
相关论文
共 40 条
[1]   Improving Traffic Forecasting for 5G Core Network Scalability: A Machine Learning Approach [J].
Alawe, Imad ;
Ksentini, Adlen ;
Hadjadj-Aoul, Yassine ;
Bertin, Philippe .
IEEE NETWORK, 2018, 32 (06) :42-49
[2]  
[Anonymous], FOUND TRENDS MACH LE
[3]  
[Anonymous], 2011, CHINA MOBILE RES I W
[4]  
[Anonymous], 2011, Advances in neural information processing systems
[5]   Mirror descent and nonlinear projected subgradient methods for convex optimization [J].
Beck, A ;
Teboulle, M .
OPERATIONS RESEARCH LETTERS, 2003, 31 (03) :167-175
[6]  
Cao Y., 2014, Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process Predictions
[7]  
Chalupka K, 2013, J MACH LEARN RES, V14, P333
[8]   Caching in the Sky: Proactive Deployment of Cache-Enabled Unmanned Aerial Vehicles for Optimized Quality-of-Experience [J].
Chen, Mingzhe ;
Mozaffari, Mohammad ;
Saad, Walid ;
Yin, Changchuan ;
Debbah, Merouane ;
Hong, Choong Seon .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (05) :1046-1061
[9]   System Identification Via Sparse Multiple Kernel-Based Regularization Using Sequential Convex Optimization Techniques [J].
Chen, Tianshi ;
Andersen, Martin S. ;
Ljung, Lennart ;
Chiuso, Alessandro ;
Pillonetto, Gianluigi .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (11) :2933-2945
[10]  
Deisenroth MP, 2015, PR MACH LEARN RES, V37, P1481