EFFICIENT DISCRETE LAGRANGE MULTIPLIERS IN THREE FIRST-ORDER FINITE ELEMENT DISCRETIZATIONS FOR THE A POSTERIORI ERROR CONTROL IN AN OBSTACLE PROBLEM

被引:4
作者
Carstensen, C. [1 ]
Koehler, K. [1 ]
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
关键词
obstacle problem; variational inequality; conforming; nonconforming; mixed; discrete Lagrange multiplier; efficiency; reliability; inexact solve; a posteriori; finite element method; ESTIMATORS; RAVIART; COURANT;
D O I
10.1137/15M1033770
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The efficient design of a discrete Lagrange multiplier is a key ingredient in the a posteriori error analysis for the obstacle problem. Affirmative examples exist for three different first-order finite element methods (FEMs), namely, the P-1 conforming Courant, the P-1 nonconforming Crouzeix-Raviart, and the lowest-order mixed Raviart-Thomas. With those discrete Lagrange multipliers, a general reliable and efficient a posteriori error analysis for the error in the energy norm of the displacement variables applies to all those discretizations for affine obstacles under minimal assumptions.
引用
收藏
页码:349 / 375
页数:27
相关论文
共 31 条
[1]   A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements [J].
Ainsworth, Mark .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :189-204
[2]  
[Anonymous], 2007, FINITE ELEMENTE
[3]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[4]   A posteriori error estimators for obstacle problems - another look [J].
Braess, D .
NUMERISCHE MATHEMATIK, 2005, 101 (03) :415-421
[5]   Convergence analysis of a conforming adaptive finite element method for an obstacle problem [J].
Braess, Dietrich ;
Carstensen, Carsten ;
Hoppe, Ronald H. W. .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :455-471
[6]   An a posteriori error estimate and a comparison theorem for the nonconforming P 1 element [J].
Braess, Dietrich .
CALCOLO, 2009, 46 (02) :149-155
[7]   A posteriori estimators for obstacle problems by the hypercircle method [J].
Braess, Dietrich ;
Hoppe, Ronald H. W. ;
Schoeberl, Joachim .
COMPUTING AND VISUALIZATION IN SCIENCE, 2008, 11 (4-6) :351-362
[8]  
BRENNER S. C., 2008, MATH THEORY FINITE E, VThird
[9]   ERROR ESTIMATES FOR FINITE-ELEMENT SOLUTION OF VARIATIONAL INEQUALITIES [J].
BREZZI, F ;
HAGER, WW ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :1-16
[10]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587