Factored principal components analysis, with applications to face recognition

被引:11
|
作者
Dryden, Ian L. [1 ]
Bai, Li [2 ]
Brignell, Christopher J. [1 ]
Shen, Linlin [3 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Univ Nottingham, Sch Comp Sci, Nottingham NG7 2RD, England
[3] Shen Zhen Univ, Sch Informat & Engn, Shenzhen, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Face recognition; Forensic identification; Gabor wavelets; Kernel density estimator; Likelihood ratio; Multivariate normal; Principal components analysis; 2-DIMENSIONAL PCA; REPRESENTATION;
D O I
10.1007/s11222-008-9087-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A dimension reduction technique is proposed for matrix data, with applications to face recognition from images. In particular, we propose a factored covariance model for the data under study, estimate the parameters using maximum likelihood, and then carry out eigendecompositions of the estimated covariance matrix. We call the resulting method factored principal components analysis. We also develop a method for classification using a likelihood ratio criterion, which has previously been used for evaluating the strength of forensic evidence. The methodology is illustrated with applications in face recognition.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [21] ROBUST ADAPTED PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION
    Chen, Shaokang
    Lovell, Brian C.
    Shan, Ting
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (03) : 491 - 520
  • [22] Face recognition with weighted kernel principal component analysis
    Liu, Nan
    Wang, Han
    Yau, Wei-Yun
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 445 - +
  • [23] Topological principal component analysis for face encoding and recognition
    Pujol, A
    Vitrià, J
    Lumbreras, F
    Villanueva, JJ
    PATTERN RECOGNITION LETTERS, 2001, 22 (6-7) : 769 - 776
  • [24] Modular Image Principal Component Analysis for Face Recognition
    Pereira, Jose Francisco
    Cavalcanti, George D. C.
    Ren, Tsang Ing
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 1969 - 1974
  • [25] Face recognition using improved principal component analysis
    Nara, Y
    Yang, JM
    Suematsu, Y
    MHS2003: PROCEEDINGS OF 2003 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE, 2003, : 77 - 82
  • [26] Face recognition using kernel principal component analysis
    Kim, KI
    Jung, K
    Kim, HJ
    IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (02) : 40 - 42
  • [27] Application of Statistical Data Processing for Solving the Problem of Face Recognition by Using Principal Components Analysis Method
    Min, Wai Yan
    Romanova, Ekaterina
    Lisovec, Yuri
    San, Aung Myo
    PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 2208 - 2212
  • [28] Ship silhouette recognition using principal components analysis
    Gouaillier, V
    Gagnon, L
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XX, 1997, 3164 : 59 - 69
  • [29] Limitations of Principal Components Analysis for Hyperspectral Target Recognition
    Prasad, Saurabh
    Bruce, Lori Mann
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) : 625 - 629
  • [30] Face recognition using principal component analysis applied to an Egyptian face database
    Ragab, ME
    Darwish, AM
    Abed, EM
    Shaheen, SI
    MULTIPLE APPROACHES TO INTELLIGENT SYSTEMS, PROCEEDINGS, 1999, 1611 : 540 - 549