New sensitivity curves for gravitational-wave signals from cosmological phase transitions

被引:237
作者
Schmitz, Kai [1 ]
机构
[1] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland
关键词
Cosmology of Theories beyond the SM; Beyond Standard Model; Thermal Field Theory; TIMING ARRAY LIMITS; STANDARD MODEL; RADIATION; SPACE;
D O I
10.1007/JHEP01(2021)097
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Gravitational waves (GWs) from strong first-order phase transitions (SFOPTs) in the early Universe are a prime target for upcoming GW experiments. In this paper, I construct novel peak-integrated sensitivity curves (PISCs) for these experiments, which faithfully represent their projected sensitivities to the GW signal from a cosmological SFOPT by explicitly taking into account the expected shape of the signal. Designed to be a handy tool for phenomenologists and model builders, PISCs allow for a quick and systematic comparison of theoretical predictions with experimental sensitivities, as I illustrate by a large range of examples. PISCs also offer several advantages over the conventional power-law-integrated sensitivity curves (PLISCs); in particular, they directly encode information on the expected signal-to-noise ratio for the GW signal from a SFOPT. I provide semianalytical fit functions for the exact numerical PISCs of LISA, DECIGO, and BBO. In an appendix, I moreover present a detailed review of the strain noise power spectra of a large number of GW experiments. The numerical results for all PISCs, PLISCs, and strain noise power spectra presented in this paper can be downloaded from the Zenodo online repository [1]. In a companion paper [2], the concept of PISCs is used to perform an in-depth study of the GW signal from the cosmological phase transition in the real-scalar-singlet extension of the standard model. The PISCs presented in this paper will need to be updated whenever new theoretical results on the expected shape of the signal become available. The PISC approach is therefore suited to be used as a bookkeeping tool to keep track of the theoretical progress in the field.
引用
收藏
页数:62
相关论文
共 210 条
[11]  
Abbott BP., 2016, Phys. Rev. Lett, V116, P061102, DOI DOI 10.1103/PhysRevLett.116.061102
[12]   Advanced Virgo: a second-generation interferometric gravitational wave detector [J].
Acernese, F. ;
Agathos, M. ;
Agatsuma, K. ;
Aisa, D. ;
Allemandou, N. ;
Allocca, A. ;
Amarni, J. ;
Astone, P. ;
Balestri, G. ;
Ballardin, G. ;
Barone, F. ;
Baronick, J-P ;
Barsuglia, M. ;
Basti, A. ;
Basti, F. ;
Bauer, Th S. ;
Bavigadda, V. ;
Bejger, M. ;
Beker, M. G. ;
Belczynski, C. ;
Bersanetti, D. ;
Bertolini, A. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bloemen, S. ;
Blom, M. ;
Boer, M. ;
Bogaert, G. ;
Bondi, D. ;
Bondu, F. ;
Bonelli, L. ;
Bonnand, R. ;
Boschi, V. ;
Bosi, L. ;
Bouedo, T. ;
Bradaschia, C. ;
Branchesi, M. ;
Briant, T. ;
Brillet, A. ;
Brisson, V. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Buy, C. ;
Cagnoli, G. ;
Calloni, E. ;
Campeggi, C. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
[13]  
Adam J, 2016, PHYS REV LETT, V116, DOI [10.1103/PhysRevLett.116.222302, 10.1103/PhysRevLett.116.241103]
[14]   Probing Trans-Electroweak First Order Phase Transitions from Gravitational Waves [J].
Addazi, Andrea ;
Marciano, Antonino ;
Pasechnik, Roman .
PHYSICS, 2019, 1 (01) :92-102
[15]   Gravitational footprints of massive neutrinos and lepton number breaking [J].
Addazi, Andrea ;
Marciano, Antonino ;
Morais, Antonio P. ;
Pasechnik, Roman ;
Srivastava, Rahul ;
Valle, Jose W. F. .
PHYSICS LETTERS B, 2020, 807
[16]   The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries [J].
Aggarwal, K. ;
Arzoumanian, Z. ;
Baker, P. T. ;
Brazier, A. ;
Brinson, M. R. ;
Brook, P. R. ;
Burke-Spolaor, S. ;
Chatterjee, S. ;
Cordes, M. ;
Cornish, N. J. ;
Crawford, F. ;
Crowter, K. ;
Cromartie, H. T. ;
DeCesar, M. ;
Demorest, P. B. ;
Dolch, T. ;
Ellis, J. A. ;
Ferdman, R. D. ;
Ferrara, E. ;
Fonseca, E. ;
Garver-Daniels, N. ;
Gentile, P. ;
Hazboun, J. S. ;
Holgado, A. M. ;
Huerta, E. A. ;
Islo, K. ;
Jennings, R. ;
Jones, G. ;
Jones, M. L. ;
Kaiser, A. R. ;
Kaplan, D. L. ;
Kelley, L. Z. ;
Keys, J. S. ;
Lam, M. T. ;
Lazio, T. J. W. ;
Levin, L. ;
Lorimer, D. R. ;
Luo, J. ;
Lynch, R. S. ;
Madison, D. R. ;
McLaughlin, M. A. ;
McWilliams, S. T. ;
Mingarelli, C. M. F. ;
Ng, C. ;
Nice, D. J. ;
Pennucci, T. T. ;
Pol, N. S. ;
Ransom, S. M. ;
Ray, P. S. ;
Siemens, X. .
ASTROPHYSICAL JOURNAL, 2019, 880 (02)
[17]   Gravitational waves from phase transitions in models with charged singlets [J].
Ahriche, Amine ;
Hashino, Katsuya ;
Kanemura, Shinya ;
Nasri, Salah .
PHYSICS LETTERS B, 2019, 789 :119-126
[18]   First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA [J].
Akutsu, T. ;
Ando, M. ;
Arai, K. ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Aritomi, N. ;
Asada, H. ;
Aso, Y. ;
Atsuta, S. ;
Awai, K. ;
Bae, S. ;
Baiotti, L. ;
Barton, M. A. ;
Cannon, K. ;
Capocasa, E. ;
Chen, C-S ;
Chiu, T-W ;
Cho, K. ;
Chu, Y-K ;
Craig, K. ;
Creus, W. ;
Doi, K. ;
Eda, K. ;
Enomoto, Y. ;
Flaminio, R. ;
Fujii, Y. ;
Fujimoto, M-K ;
Fukunaga, M. ;
Fukushima, M. ;
Furuhata, T. ;
Hagiwara, A. ;
Haino, S. ;
Hasegawa, K. ;
Hashino, K. ;
Hayama, K. ;
Hirobayashi, S. ;
Hirose, E. ;
Hsieh, B. H. ;
Huang, C-Z ;
Ikenoue, B. ;
Inoue, Y. ;
Ioka, K. ;
Itoh, Y. ;
Izumi, K. ;
Kaji, T. ;
Kajita, T. ;
Kakizaki, M. ;
Kamiizumi, M. ;
Kanbara, S. .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (16)
[19]   A fresh look at the gravitational-wave signal from cosmological phase transitions [J].
Alanne, Tommi ;
Hugle, Thomas ;
Platscher, Moritz ;
Schmitz, Kai .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
[20]   Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities [J].
Allen, B ;
Romano, JD .
PHYSICAL REVIEW D, 1999, 59 (10)