Structural and Motional Contributions of the Bacillus subtilis ClpC N-Domain to Adaptor Protein Interactions

被引:11
作者
Kojetin, Douglas J. [1 ]
McLaughlin, Patrick D. [2 ]
Thompson, Richele J. [2 ]
Dubnau, David [3 ]
Prepiak, Peter [3 ]
Rance, Mark [1 ]
Cavanagh, John [2 ]
机构
[1] Univ Cincinnati, Coll Med, Dept Mol Genet Biochem & Microbiol, Cincinnati, OH 45267 USA
[2] N Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA
[3] Publ Hlth Res Inst, Newark, NJ 07103 USA
基金
美国国家卫生研究院;
关键词
competence; adaptor protein proteosome interactions; HSP100/Clp N-domain; NMR dynamics; MODEL-FREE; CRYSTAL-STRUCTURE; SUBSTRATE-BINDING; TERMINAL DOMAIN; CHEMICAL-SHIFT; CHAPERONE; DIFFUSION; COMPETENCE; DYNAMICS; ALIGNMENT;
D O I
10.1016/j.jmb.2009.01.046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The AAA(+) (ATPases associated with a variety of cellular activities) superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility and conformational exchange on the microsecond-to-millisecond timescale. The electrostatic surface of N-ClpCR differs substantially from the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC. (c) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:639 / 652
页数:14
相关论文
共 68 条
[1]   Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity [J].
Andersson, FI ;
Blakytny, R ;
Kirstein, J ;
Turgay, K ;
Bukau, B ;
Mogk, A ;
Clarke, AK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (09) :5468-5475
[2]  
[Anonymous], 1986, NMR of proteins and nucleic acids
[3]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[4]   The N terminus of C1pB from Thermus thermophilus is not essential for the chaperone activity [J].
Beinker, P ;
Schlee, S ;
Groemping, Y ;
Seidel, R ;
Reinstein, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (49) :47160-47166
[5]  
Beyer A, 1997, PROTEIN SCI, V6, P2043
[6]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[7]  
Case D.A., 2006, AMBER 9
[8]  
Cavanagh J, 2007, PROTEIN NMR SPECTROSCOPY: PRINCIPLES AND PRACTICE, 2ND EDITION, P1
[9]   A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles [J].
Chou, JJ ;
Gaemers, S ;
Howder, B ;
Louis, JM ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 2001, 21 (04) :377-382
[10]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302