On The Harmonic Index and The Girth for Graphs

被引:0
作者
Zhong, Lingping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
来源
ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY | 2013年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
harmonic index; girth; relation; SUM-CONNECTIVITY INDEX; BICYCLIC GRAPHS; RANDIC INDEX; TREES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The harmonic index of a graph G is defined as the sum of the weights 2/d(u) + d(v) of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this work, we present the minimum and maximum values of the harmonic index for connected graphs with girth at least k (k >= 3), and characterize the corresponding extremal graphs. Using this result, we obtain several relations between the harmonic index and the girth of a graph.
引用
收藏
页码:253 / 260
页数:8
相关论文
共 24 条
[1]   On the harmonic index and the chromatic number of a graph [J].
Deng, Hanyuan ;
Balachandran, S. ;
Ayyaswamy, S. K. ;
Venkatakrishnan, Y. B. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2740-2744
[2]   On the general sum-connectivity index of trees [J].
Du, Zhibin ;
Zhou, Bo ;
Trinajstic, Nenad .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :402-405
[3]   Minimum general sum-connectivity index of unicyclic graphs [J].
Du, Zhibin ;
Zhou, Bo ;
Trinajstic, Nenad .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (03) :697-703
[4]  
Fajtlowicz S., 1987, Congr. Numerantium, V60, P187, DOI DOI 10.4236/APM.2014.45021
[5]   SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.) [J].
FAVARON, O ;
MAHEO, M ;
SACLE, JF .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :197-220
[6]  
Gutman I., 2008, Recent Results in the Theory of Randi Index
[7]  
Ilic A., NOTE HARMONIC INDEX
[8]  
Li X., 2006, Mathematical Chemistry Monographs
[9]  
Li XL, 2008, MATCH-COMMUN MATH CO, V59, P127
[10]  
Liu J., 2013, Appl. Math, V4, P1204, DOI 10.4236/am.2013.48161