Some unitary similarity invariant sets preservers of skew Lie products

被引:9
|
作者
Cui, Jianlian [1 ]
Li, Qiting [1 ]
Hou, Jinchuan [2 ,3 ]
Qi, Xiaofei [3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
[3] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical range; Numerical radius; Pseudo-spectrum; Skew Lie products; POLYNOMIAL XY; MAPS;
D O I
10.1016/j.laa.2014.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H and K be complex separable Hilbert spaces with dimensions at least three, and B(H) the Banach algebra of all bounded linear operators on H. Let Delta(.) denote W(.) or sigma(epsilon)(.), where, for A, W(A) stands for the numerical range of A is an element of B(H) and sigma(epsilon)(A) the epsilon-pseudospectrum of A. It is shown that a bijective map (no algebraic structure assumed) Phi : B(H) -> B(K) satisfies that Delta(AB - BA*) = Delta(Phi(A)Phi(B) - Phi(B)Phi(A)*) for all A, B is an element of B(H) if and only if there exists a unitary operator U is an element of B(H, K) such that Phi(A) = mu U AU* for all A is an element of B(H), where mu is an element of {-1, 1}. If Delta(.) = W(.) then the injectivity assumption on Phi can be omitted. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 92
页数:17
相关论文
共 19 条