Violation of Hudson's theorem in relativistic quantum mechanics

被引:5
作者
Campos, Andre G. [1 ]
Cabrera, Renan [1 ]
Bondar, Denys I. [1 ]
Rabitz, Herschel A. [1 ]
机构
[1] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 03期
基金
美国国家科学基金会;
关键词
WIGNER FUNCTION-APPROACH; PHASE-SPACE; CLASSICAL LIMIT;
D O I
10.1103/PhysRevA.90.034102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In nonrelativistic quantum mechanics, Hudson's theorem states that a Gaussian wave function is the only pure state corresponding to a positive Wigner function (WF). We explicitly construct non-Gaussian Dirac spinors with positive relativistic WFs. These pure relativistic states are coherent superpositions of particles and antiparticles, while the existence of positive WFs exclusive composed of particles is conjectured. These observations may open new directions in relativistic quantum information theory.
引用
收藏
页数:4
相关论文
共 37 条
  • [1] [Anonymous], 2005, Advanced Visual Quantum Mechanics, DOI DOI 10.1007/B138654
  • [2] [Anonymous], 1990, EXACT SOLUTION RELAT, DOI DOI 10.1007/978-94-009-1854-2
  • [3] PHASE-SPACE STRUCTURE OF THE DIRAC VACUUM
    BIALYNICKIBIRULA, I
    GORNICKI, P
    RAFELSKI, J
    [J]. PHYSICAL REVIEW D, 1991, 44 (06): : 1825 - 1835
  • [4] BIALYNICKIBIRULA I, 1977, ACTA PHYS AUSTRIACA, P111
  • [5] Blokhintsev D.I., 2010, The Philosophy of Quantum Mechanics
  • [6] Classical limit of fermions in phase space
    Bolivar, AO
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) : 4020 - 4030
  • [7] Wigner phase-space distribution as a wave function
    Bondar, Denys I.
    Cabrera, Renan
    Zhdanov, Dmitry V.
    Rabitz, Herschel A.
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [8] Operational Dynamic Modeling Transcending Quantum and Classical Mechanics
    Bondar, Denys I.
    Cabrera, Renan
    Lompay, Robert R.
    Ivanov, Misha Yu.
    Rabitz, Herschel A.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [9] Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries
    Brif, C
    Mann, A
    [J]. PHYSICAL REVIEW A, 1999, 59 (02) : 971 - 987
  • [10] Applications of the Wigner distribution function in signal processing
    Dragoman, D
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2005, 2005 (10) : 1520 - 1534