Considerations for a More Accurate Evaluation Method for Photocatalytic Water Splitting

被引:223
作者
Cao, Shuang [1 ]
Piao, Lingyu [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Key Lab Standardizat & Measurement Nanotechno, CAS Ctr Excellence Nanosci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
analytical chemistry; H-2; production; photocatalysis; water splitting; HYDROGEN EVOLUTION; COMPARING RATES; QUANTUM YIELDS; NANOPARTICLES; COCATALYSTS; PERFORMANCE; SEPARATION; TIO2;
D O I
10.1002/anie.202009633
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Over the past decades, various photocatalysts have been developed and great progress has been achieved in the field of solar-driven photocatalytic water splitting. However, the lack of an accurate and comprehensive evaluation method greatly hinders the meaningful comparison between different systems and becomes a serious impediment for the development of photocatalysts. Although many researchers are aware of this, there has been little work in this area. In this Viewpoint, we first analyze the insufficiencies of the existing evaluation methods and then make preliminary suggestions, aiming to stimulate discussion in the research community and hopefully lead to a widely accepted and authoritative evaluation system to assess photocatalyst performance.
引用
收藏
页码:18312 / 18320
页数:9
相关论文
共 47 条
[1]  
[Anonymous], 2019, ANGEW CHEM
[2]  
[Anonymous], 2019, ANGEW CHEM
[3]   Solar photoproduction of hydrogen: A review [J].
Bolton, JR .
SOLAR ENERGY, 1996, 57 (01) :37-50
[4]   Virtual Issue on Best Practices for Reporting the Properties of Materials and Devices [J].
Buriak, Jillian M. ;
Jones, Christopher W. ;
Kamat, Prashant V. ;
Schanze, Kirk S. ;
Schatz, George C. ;
Scholes, Gregory D. ;
Weiss, Paul S. .
CHEMISTRY OF MATERIALS, 2016, 28 (11) :3525-3526
[5]   Best Practices for Reporting on Heterogeneous Photocatalysis [J].
Buriak, Jillian M. ;
Kamat, Prashant V. ;
Schanze, Kirk S. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) :11815-11816
[6]   Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder-Engineered TiO2 Photonic Crystals [J].
Cai, Jinmeng ;
Wu, Moqing ;
Wang, Yating ;
Zhang, Hao ;
Meng, Ming ;
Tian, Ye ;
Li, Xingang ;
Zhang, Jing ;
Zheng, Lirong ;
Gong, Jinlong .
CHEM, 2017, 2 (06) :877-892
[7]   Ultrasmall CoP Nanoparticles as Efficient Cocatalysts for Photocatalytic Formic Acid Dehydrogenation [J].
Cao, Shuang ;
Chen, Yong ;
Wang, Hui ;
Chen, Jie ;
Shi, Xinghua ;
Li, Hongmei ;
Cheng, Ping ;
Liu, Xinfeng ;
Liu, Min ;
Piao, Lingyu .
JOULE, 2018, 2 (03) :549-557
[8]   Metal Phosphides as Co-Catalysts for Photocatalytic and Photoelectrocatalytic Water Splitting [J].
Cao, Shuang ;
Wang, Chuan-Jun ;
Fu, Wen-Fu ;
Chen, Yong .
CHEMSUSCHEM, 2017, 10 (22) :4306-4323
[9]   Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation [J].
Cao, Shuang ;
Chen, Yong ;
Wang, Chuan-Jun ;
Lv, Xiao-Jun ;
Fu, Wen-Fu .
CHEMICAL COMMUNICATIONS, 2015, 51 (41) :8708-8711
[10]   Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation [J].
Cao, Shuang ;
Chen, Yong ;
Hou, Chun-Chao ;
Lv, Xiao-Jun ;
Fu, Wen-Fu .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (11) :6096-6101