MODIFIED INERTIAL METHODS FOR FINDING COMMON SOLUTIONS TO VARIATIONAL INEQUALITY PROBLEMS

被引:4
作者
Shehu, Yekini [1 ]
Iyiola, Olaniyi S. [2 ]
Akaligwo, Emmanuel [1 ]
机构
[1] Univ Nigeria, Dept Math, Nsukka, Nigeria
[2] Minnesota State Univ Moorhead, Dept Math, Moorhead, MN USA
来源
FIXED POINT THEORY | 2019年 / 20卷 / 02期
关键词
Variational inequality; monotone operator; inertial terms; weak convergence; Hilbert spaces; STRONG-CONVERGENCE; MONOTONE-OPERATORS; ALGORITHM;
D O I
10.24193/fpt-ro.2019.2.45
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is our aim in this paper to propose modified inertial versions of both subgradient extragradient method and the extragradient method for solving common solutions to variational inequality problems involving monotone and Lipschitz continuous operators and obtain weak convergence results in real Hilbert spaces. We give several numerical illustrations of our proposed methods and give numerical comparisons of our methods with subgradient extragradient and extragradient methods.
引用
收藏
页码:683 / 702
页数:20
相关论文
共 29 条
  • [1] Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space
    Alvarez, F
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) : 773 - 782
  • [2] [Anonymous], 1981, Numerical Analysis of Variational Inequalities
  • [3] [Anonymous], 2001, INHERENTLY PARALLEL, DOI DOI 10.1016/S1570-579X(01)80028-8
  • [4] Apostol R. Y., 2012, J. Comput. Appl Math., V107, P3
  • [5] Aubin J.P., 1984, Applied Nonlinear Analysis
  • [6] Baiocchi C., 1984, VARIATIONAL QUASIVAR
  • [7] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [8] Enlargement of monotone operators with applications to variational inequalities
    Burachik, RS
    Iusem, AN
    Svaiter, BF
    [J]. SET-VALUED ANALYSIS, 1997, 5 (02): : 159 - 180
  • [9] Strong convergence results for variational inequalities and fixed point problems using modified viscosity implicit rules
    Cai, Gang
    Shehu, Yekini
    Iyiola, Olaniyi Samuel
    [J]. NUMERICAL ALGORITHMS, 2018, 77 (02) : 535 - 558
  • [10] Iterative Methods for Fixed Point Problems in Hilbert Spaces Preface
    Cegielski, Andrzej
    [J]. ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 : IX - +