On Randic energy

被引:102
作者
Gutman, Ivan [1 ,2 ]
Furtula, Boris [1 ]
Bozkurt, S. Burcu [3 ]
机构
[1] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
[2] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia
[3] Selcuk Univ, Fac Sci, Dept Math, TR-42075 Konya, Turkey
关键词
Graph spectrum; Graph energy; Randic matrix; Randic energy; Normalized Laplacian matrix; Normalized signless Laplacian matrix; Normalized Laplacian energy; SIGNLESS LAPLACIAN; SPECTRAL THEORY; INDEX; GRAPHS; NARUMI; MATRIX;
D O I
10.1016/j.laa.2013.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Randic matrix R = (r(ij)) of a graph G whose vertex vi has degree d(i) is defined by r(ij) = 1/root d(i)d(j) if the vertices v(i) and v(j) are adjacent and r(ij) = 0 otherwise. The Randic. energy RE is the sum of absolute values of the eigenvalues of R. RE coincides with the normalized Laplacian energy and the normalized signless-Laplacian energy. Several properties or R and RE are determined, including characterization of graphs with minimal RE. The structure of the graphs with maximal RE is conjectured. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 36 条
  • [1] Bozkurt SB, 2012, EUR J PURE APPL MATH, V5, P88
  • [2] Bozkurt SB, 2010, MATCH-COMMUN MATH CO, V64, P321
  • [3] Bozkurt SB, 2010, MATCH-COMMUN MATH CO, V64, P239
  • [4] On the normalized Laplacian energy and general Randic index R_1 of graphs
    Cavers, Michael
    Fallat, Shaun
    Kirkland, Steve
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) : 172 - 190
  • [5] Chung F., 1992, Spectral Graph Theory
  • [6] Coulson CA, 1940, P CAMB PHILOS SOC, V36, P201
  • [7] Cvetkovi DM., 1980, Spectra of Graphs: Theory and Applications
  • [8] Signless Laplacians of finite graphs
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 155 - 171
  • [9] TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, III
    Cvetkovic, Dragos
    Simic, Slobodan K.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (01) : 156 - 166
  • [10] TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I
    Cvetkovic, Dragos
    Simic, Slobodan K.
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99): : 19 - 33