On Delay-Independent Stability of a Class of Nonlinear Positive Time-Delay Systems

被引:27
作者
Bokharaie, Vahid S. [1 ]
Mason, Oliver [1 ]
机构
[1] Natl Univ Ireland Maynooth, Hamilton Inst, Maynooth, Kildare, Ireland
关键词
Delay systems; positive systems; stability of nonlinear systems; LYAPUNOV FUNCTIONS;
D O I
10.1109/TAC.2014.2301574
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a condition for delay-independent stability of a class of nonlinear positive systems. This result applies to systems that are not necessarily monotone and extends recent work on cooperative nonlinear systems.
引用
收藏
页码:1974 / 1977
页数:4
相关论文
共 24 条
[1]   On stability and dissipativity of some classes of complex systems [J].
Aleksandrov, A. Yu. ;
Platonov, A. V. .
AUTOMATION AND REMOTE CONTROL, 2009, 70 (08) :1265-1280
[2]  
[Anonymous], 2002, Mathematical biology, Interdisciplinary applied mathematics
[3]  
[Anonymous], 2000, PUR AP M-WI
[4]   Co-Positive Lyapunov Functions for the Stabilization of Positive Switched Systems [J].
Blanchini, Franco ;
Colaneri, Patrizio ;
Valcher, Maria Elena .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (12) :3038-3050
[5]   D-Stability and Delay-Independent Stability of Homogeneous Cooperative Systems [J].
Bokharaie, Vahid Samadi ;
Mason, Oliver ;
Verwoerd, Mark .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (12) :2882-2885
[6]   An ISS small gain theorem for general networks [J].
Dashkovskiy, Sergey ;
Rueffer, Bjoern S. ;
Wirth, Fabian R. .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2007, 19 (02) :93-122
[7]   Linear Copositive Lyapunov Functions for Continuous-Time Positive Switched Systems [J].
Fornasini, Ettore ;
Valcher, Maria Elena .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (08) :1933-1937
[8]  
Granas A., 2003, Fixed Point Theory, DOI DOI 10.1007/978-0-387-21593-8
[9]  
Haddad WM, 2004, P AMER CONTR CONF, P1422
[10]  
Hale J.K., 1993, Introduction to Functional Differntial Equations