Simulation of fatigue crack growth with a cyclic cohesive zone model

被引:64
作者
Roth, Stephan [1 ]
Huetter, Geralf [1 ]
Kuna, Meinhard [1 ]
机构
[1] TU Bergakad Freiberg, Inst Mech & Fluid Dynam, D-09596 Freiberg, Germany
关键词
Cyclic cohesive zone model; Fatigue crack growth; Damage mechanics; Boundary layer model; PROPAGATION; ELEMENTS; DAMAGE;
D O I
10.1007/s10704-014-9942-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fatigue crack growth is simulated for an elastic solid with a cyclic cohesive zone model (CZM). Material degradation and thus separation follows from the current damage state, which represents the amount of maximum transferable traction across the cohesive zone. The traction-separation relation proposed in the cyclic CZM includes non-linear paths for both un- and reloading. This allows a smooth transition from reversible to damaged state. The exponential traction-separation envelope is controlled by two shape parameters. Moreover, a lower bound for damage evolution is introduced by a local damage dependent endurance limit, which enters the damage evolution equation. The cyclic CZM is applied to mode I fatigue crack growth under -controlled external loading conditions. The influences of the model parameters with respect to static failure load , threshold load and Paris parameters are investigated. The study reveals that the proposed endurance limit formulation is well suited to control the ratio independent of and . An identification procedure is suggested to identify the cohesive parameters with the help of Wohler diagrams and fatigue crack growth rate curves.
引用
收藏
页码:23 / 45
页数:23
相关论文
共 37 条
[1]  
[Anonymous], 2007, ERMUDUNGSFESTIGKEIT
[2]  
[Anonymous], 2005, FRACTURE MECH FUNDAM
[3]  
Barenblatt GI, 1962, Adv Appl Mech, V7, P55, DOI [10.1016/S0065-2156(08)70121-2, DOI 10.1016/S0065-2156(08)70121-2]
[4]   A cohesive zone model for fatigue and creep-fatigue crack growth in single crystal superalloys [J].
Bouvard, J. L. ;
Chaboche, J. L. ;
Feyel, F. ;
Gallerneau, F. .
INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (05) :868-879
[5]  
Brocks W., 2003, COMPREHENSIVE STRUCT, V3, P127
[6]   Computational modelling of impact damage in brittle materials [J].
Camacho, GT ;
Ortiz, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (20-22) :2899-2938
[7]   YIELDING OF STEEL SHEETS CONTAINING SLITS [J].
DUGDALE, DS .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1960, 8 (02) :100-104
[8]   OVERVIEW NO 112 - THE CYCLIC PROPERTIES OF ENGINEERING MATERIALS [J].
FLECK, NA ;
KANG, KJ ;
ASHBY, MF .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :365-381
[9]   Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities [J].
Goyal, VK ;
Johnson, ER ;
Dávila, CG .
COMPOSITE STRUCTURES, 2004, 65 (3-4) :289-305
[10]  
Haibach Erwin, 1989, BetriebsfestigkeitVerfahren und Daten zur Bauteilberechnung