Systematic extension of the Cahn-Hilliard model for motility-induced phase separation

被引:19
|
作者
Rapp, Lisa [1 ]
Bergmann, Fabian [1 ]
Zimmermann, Walter [1 ]
机构
[1] Univ Bayreuth, Theoret Phys 1, D-95440 Bayreuth, Germany
来源
EUROPEAN PHYSICAL JOURNAL E | 2019年 / 42卷 / 05期
关键词
Soft Matter: Self-organisation and Supramolecular Assemblies;
D O I
10.1140/epje/i2019-11825-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
.We consider a continuum model for motility-induced phase separation (MIPS) of active Brownian particles (ABP) (J. Chem. Phys. 142, 224149 (2015)). Using a recently introduced perturbative analysis (Phys. Rev. E 98, 020604(R) (2018)), we show that this continuum model reduces to the classic Cahn-Hilliard (CH) model near the onset of MIPS. This makes MIPS another example of the so-called active phase separation. We further introduce a generalization of the perturbative analysis to the next higher order. This results in a generic higher-order extension of the CH model for active phase separation. Our analysis establishes the mathematical link between the basic mean-field ABP model on the one hand, and the leading order and extended CH models on the other hand. Comparing numerical simulations of the three models, we find that the leading-order CH model agrees nearly perfectly with the full continuum model near the onset of MIPS. We also give estimates of the control parameter beyond which the higher-order corrections become relevant and compare the extended CH model to recent phenomenological models.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Spontaneous Velocity Alignment in Motility-Induced Phase Separation
    Caprini, L.
    Marconi, U. Marini Bettolo
    Puglisi, A.
    PHYSICAL REVIEW LETTERS, 2020, 124 (07)
  • [42] Motility-induced phase separation in an active dumbbell fluid
    Suma, A.
    Gonnella, G.
    Marenduzzo, D.
    Orlandini, E.
    EPL, 2014, 108 (05)
  • [43] Transient coarsening behaviour in the Cahn-Hilliard model
    Garcke, H
    Niethammer, B
    Rumpf, M
    Weikard, U
    ACTA MATERIALIA, 2003, 51 (10) : 2823 - 2830
  • [44] Pattern formation of the stationary Cahn-Hilliard model
    Kielhofer, H
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 : 1219 - 1243
  • [45] A Cahn-Hilliard phase field model coupled to an Allen-Cahn model of viscoelasticity at large strains
    Agosti, A.
    Colli, P.
    Garcke, H.
    Rocca, E.
    NONLINEARITY, 2023, 36 (12) : 6589 - 6638
  • [46] Natural element analysis of the Cahn-Hilliard phase-field model
    Rajagopal, Amirtham
    Fischer, Paul
    Kuhl, Ellen
    Steinmann, Paul
    COMPUTATIONAL MECHANICS, 2010, 46 (03) : 471 - 493
  • [47] Entropy production in the nonreciprocal Cahn-Hilliard model
    Suchanek, Thomas
    Kroy, Klaus
    Loos, Sarah A. M.
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [48] Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions
    Kenzler, R
    Eurich, F
    Maass, P
    Rinn, B
    Schropp, J
    Bohl, E
    Dieterich, W
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 133 (2-3) : 139 - 157
  • [49] Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation
    Miehe, C.
    Hildebrand, F. E.
    Boeger, L.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2164):
  • [50] TRIANGULATION BASED ISOGEOMETRIC ANALYSIS OF THE CAHN-HILLIARD PHASE-FIELD MODEL
    Zhang, Ruochun
    Qian, Xiaoping
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 1A, 2018,