Systematic extension of the Cahn-Hilliard model for motility-induced phase separation

被引:19
|
作者
Rapp, Lisa [1 ]
Bergmann, Fabian [1 ]
Zimmermann, Walter [1 ]
机构
[1] Univ Bayreuth, Theoret Phys 1, D-95440 Bayreuth, Germany
来源
EUROPEAN PHYSICAL JOURNAL E | 2019年 / 42卷 / 05期
关键词
Soft Matter: Self-organisation and Supramolecular Assemblies;
D O I
10.1140/epje/i2019-11825-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
.We consider a continuum model for motility-induced phase separation (MIPS) of active Brownian particles (ABP) (J. Chem. Phys. 142, 224149 (2015)). Using a recently introduced perturbative analysis (Phys. Rev. E 98, 020604(R) (2018)), we show that this continuum model reduces to the classic Cahn-Hilliard (CH) model near the onset of MIPS. This makes MIPS another example of the so-called active phase separation. We further introduce a generalization of the perturbative analysis to the next higher order. This results in a generic higher-order extension of the CH model for active phase separation. Our analysis establishes the mathematical link between the basic mean-field ABP model on the one hand, and the leading order and extended CH models on the other hand. Comparing numerical simulations of the three models, we find that the leading-order CH model agrees nearly perfectly with the full continuum model near the onset of MIPS. We also give estimates of the control parameter beyond which the higher-order corrections become relevant and compare the extended CH model to recent phenomenological models.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Systematic extension of the Cahn-Hilliard model for motility-induced phase separation
    Lisa Rapp
    Fabian Bergmann
    Walter Zimmermann
    The European Physical Journal E, 2019, 42
  • [2] A CAHN-HILLIARD MODEL FOR CELL MOTILITY
    Cucchi, Alessandro
    Mellet, Antoine
    Meunier, Nicolas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) : 3843 - 3880
  • [3] On a Cahn-Hilliard model for phase separation with elastic misfit
    Garcke, H
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (02): : 165 - 185
  • [4] A mathematical model for phase separation: A generalized Cahn-Hilliard equation
    Berti, A.
    Bochicchio, I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (10) : 1193 - 1201
  • [5] Phase Separation in the Advective Cahn-Hilliard Equation
    Feng, Yu
    Feng, Yuanyuan
    Iyer, Gautam
    Thiffeault, Jean-Luc
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 2821 - 2845
  • [6] EXISTENCE FOR THE CAHN-HILLIARD PHASE-SEPARATION MODEL WITH A NONDIFFERENTIABLE ENERGY
    ELLIOTT, CM
    MIKELIC, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 158 : 181 - 203
  • [7] Motility-Induced Phase Separation
    Cates, Michael E.
    Tailleur, Julien
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 : 219 - 244
  • [8] The Cahn-Hilliard theory of phase separation applied to cuprates
    de Mello, EVL
    Caixeiro, ES
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2006, 67 (1-3) : 165 - 168
  • [9] PHASE TRANSITION AND SEPARATION IN COMPRESSIBLE CAHN-HILLIARD FLUIDS
    Fabrizio, Mauro
    Giorgi, Claudio
    Morro, Angelo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (01): : 73 - 88
  • [10] Cahn-Hilliard vs Singular Cahn-Hilliard Equations in Phase Field Modeling
    Zhang, Tianyu
    Wang, Qi
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (02) : 362 - 382