Fundamental roles of ZnO and ZrO2 in the conversion of ethanol to 1,3-butadiene over ZnO-ZrO2/SiO2

被引:18
作者
Miyazawa, Tomohisa [1 ]
Tanabe, Yusuke [2 ,3 ]
Nakamura, Isao [1 ]
Shinke, Yu [2 ,3 ]
Hiza, Misao [3 ]
Choe, Yoong-Kee [4 ]
Fujitani, Tadahiro [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Interdisciplinary Res Ctr Catalyt Chem, 1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan
[2] Res Assoc High Throughput Design & Dev Adv Funct, 1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan
[3] Yokohama Rubber Co Ltd, R&D Ctr, Adv Mat Innovat Team, 2-1 Oiwake, Hiratsuka, Kanagawa 2548601, Japan
[4] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
关键词
SELECTIVE CATALYTIC CONVERSION; ACID-BASE PROPERTIES; BIO-ETHANOL; BASIS-SETS; BUTADIENE; LEBEDEV; ACETALDEHYDE; TRANSITION; CHEMISTRY; MAGNESIA;
D O I
10.1039/d0cy01453b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ZnO-ZrO2/SiO2 catalyst is very active and selective for the conversion of ethanol to 1,3-butadiene (ETB). By varying the method of catalyst preparation we found that there is no synergetic interaction between ZnO and ZrO2 functions; that is, they act as independent catalysts. Estimations through density functional theory calculations showed that the rate-determining step of the ETB reaction is dehydration of crotyl alcohol over ZnO, while the rate-determining step with ZrO2 is ethanol dehydrogenation. The ZnO and ZrO2 sites in the ZnO-ZrO2/SiO2 catalyst act in tandem to catalyze different steps of the ETB reaction.
引用
收藏
页码:7531 / 7541
页数:11
相关论文
共 49 条
[31]  
Levedev S. V., 1933, J GEN CHEM USSR, V3, P698
[32]   Investigations into the conversion of ethanol to 1,3-butadiene using MgO:SiO2 supported catalysts [J].
Lewandowski, Marek ;
Babu, Gowri S. ;
VezzOli, Massimiliano ;
Jones, Matthew D. ;
Owen, Rhodri E. ;
Mattia, Davide ;
Plucinski, Pawel ;
Mikolajska, Ewelina ;
Ochenduszko, Agnieszka ;
Apperley, David C. .
CATALYSIS COMMUNICATIONS, 2014, 49 :25-28
[33]   Catalytic study of the conversion of ethanol into 1,3-butadiene [J].
Makshina, E. V. ;
Janssens, W. ;
Sels, B. F. ;
Jacobs, P. A. .
CATALYSIS TODAY, 2012, 198 (01) :338-344
[34]   Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene [J].
Makshina, Ekaterina V. ;
Dusselier, Michiel ;
Janssens, Wout ;
Degreve, Jan ;
Jacobs, Pierre A. ;
Sels, Bert F. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) :7917-7953
[35]   Catalysis by MgO and the Role of Zn2+ in Talc Catalysts for the Selective Production of 1,3-Butadiene from Ethanol [J].
Miyaji, Akimitsu ;
Hiza, Misao ;
Sekiguchi, Yasumasa ;
Akiyama, Sohta ;
Shiga, Akinobu ;
Baba, Toshihide .
JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2018, 61 (03) :171-181
[36]   BUTADIENE FORMATION FROM ETHANOL OVER SILICA-MAGNESIA CATALYSTS [J].
NIIYAMA, H ;
ECHIGOYA, E ;
MORII, S .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1972, 45 (03) :655-+
[37]   Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica [J].
Ordomsky, V. V. ;
Sushkevich, V. L. ;
Ivanova, I. I. .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2010, 333 (1-2) :85-93
[38]   ZnTa-TUD-1 as an easily prepared, highly efficient catalyst for the selective conversion of ethanol to 1,3-butadiene [J].
Pomalaza, G. ;
Vofo, G. ;
Capron, M. ;
Dumeignil, F. .
GREEN CHEMISTRY, 2018, 20 (14) :3203-3209
[39]   Structure and Properties of Zirconia Nanoparticles from Density Functional Theory Calculations [J].
Puigdollers, Antonio Ruiz ;
Illas, Francesc ;
Pacchioni, Gianfranco .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08) :4392-4402
[40]   Revised basis sets for the LANL effective core potentials [J].
Roy, Lindsay E. ;
Hay, P. Jeffrey ;
Martin, Richard L. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (07) :1029-1031