Symplectic Jacobi-Jordan algebras

被引:12
作者
Baklouti, Amir [1 ]
Benayadi, Said [2 ]
机构
[1] Umm Al Qura Univ, Dept Math, Coll Preliminary Year, Makkah Al Mukarramah, Saudi Arabia
[2] Univ Lorraine, Lab IECL, CNRS UMR 7502, UFR MIM, 3 Rue Augustin Frenel,BP 45112, F-57073 Metz 03, France
关键词
Jacobi-Jordan algebras; Jordan algebras; Skew-symmetric algebras; anti-derivations; symplectic structures; pseudo-euclidean structures; central extensions; generalized semi-direct products; double extensions;
D O I
10.1080/03081087.2019.1626334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the structure of symplectic Jacobi-Jordan algebras. In particular, we give inductive descriptions of these algebras by introducing some processes of double extensions and their isometries. This paper also contains several interesting examples.
引用
收藏
页码:1557 / 1578
页数:22
相关论文
共 12 条
[1]   On a type of commutative algebras [J].
Agore, A. L. ;
Militaru, G. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 :222-249
[2]  
[Anonymous], 1966, An Introduction to Nonassociative Algebras
[3]  
BAEZA RV, 1990, LINEAR ALGEBRA APPL, V142, P19
[4]   Abelian para-Kahler structures on Lie algebras [J].
Bajo, Ignacio ;
Benayadi, Said .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (02) :160-173
[5]   PSEUDO-EUCLIDEAN JORDAN ALGEBRAS [J].
Baklouti, Amir ;
Benayadi, Said .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) :2094-2123
[6]   Jacobi-Jordan algebras [J].
Burde, Dietrich ;
Fialowski, Alice .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 :586-594
[7]   Double extension symplectique d'un groupe de Lie symplectique [J].
Dardie, JM ;
Medina, A .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :208-227
[8]   On an algebraic generalization of the quantum mechanical formalism [J].
Jordan, P ;
Von Neumann, J ;
Wigner, E .
ANNALS OF MATHEMATICS, 1934, 35 :29-64
[9]  
MEDINA A, 1991, MATH SCI R, V20, P247
[10]   Jordan-Lie super algebra and Jordan-Lie triple system [J].
Okubo, S ;
Kamiya, N .
JOURNAL OF ALGEBRA, 1997, 198 (02) :388-411