Compactness results for divergence type nonlinear elliptic equations

被引:2
作者
Ceccon, Jurandir [2 ]
Montenegro, Marcos [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Fed Parana, Dept Matemat, BR-81531990 Curitiba, Parana, Brazil
关键词
Critical Sobolev exponents; Divergence type equations; Compactness of solutions; OPTIMAL SOBOLEV INEQUALITIES; YAMABE PROBLEM; REGULARITY; PRINCIPLE; CONSTANTS; ORDER;
D O I
10.1007/s10231-009-0095-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a compact manifold of dimension n >= 2 and 1 < p < n. For a family of functions F-alpha defined on TM, which are p-homogeneous, positive, and convex on each fiber, of Riemannian metrics g(alpha) and of coefficients a(alpha) on M, we discuss the compactness problem of minimal energy type solutions of the equation [GRAPHICS] This question is directly connected to the study of the first best constant A(opt)(alpha) associated with the Riemannian F-alpha-Sobolev inequality [GRAPHICS] Precisely, we need to know the dependence of A(opt)(alpha) under F-alpha and g(alpha). For that, we obtain its value as the supremum on M of best constants associated with certain homogeneous Sobolev inequalities on each tangent space and show that A(opt)(alpha) is attained on M. We then establish the continuous dependence of A(opt)(alpha) in relation to F-alpha and g(alpha). The tools used here are based on convex analysis, blow-up, and variational approach.
引用
收藏
页码:653 / 677
页数:25
相关论文
共 34 条
[1]   Geometric inequalities via a general comparison principle for interacting gases [J].
Agueh, M ;
Ghoussoub, N ;
Kang, X .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :215-244
[2]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[3]   On the best Sobolev inequality [J].
Aubin, T ;
Li, YY .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (04) :353-387
[4]  
AUBIN T, 1998, SPRINGER MONOGR MATH
[5]  
Aubin T., 1976, J. Differential Geom, V11, P573, DOI [10.4310/jdg/1214433725, DOI 10.4310/JDG/1214433725]
[6]   Homogeneous sharp Sobolev inequalities on product manifolds [J].
Ceccon, J ;
Montenegro, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :277-300
[7]   General optimal euclidean sobolev and Gagliardo-Nirenberg inequalities [J].
Ceccon, J ;
Montenegro, M .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (04) :581-587
[8]   Regularity for quasilinear degenerate elliptic equations [J].
Di Fazio, G. ;
Zamboni, P. .
MATHEMATISCHE ZEITSCHRIFT, 2006, 253 (04) :787-803
[9]   Extremal functions for optimal Sobolev inequalities on compact manifolds [J].
Djadli, Z ;
Druet, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 12 (01) :59-84
[10]   Optimal Sobolev inequalities of arbitrary order on compact Riemannian manifolds [J].
Druet, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (01) :217-242