Hand Gesture Classification Using Grayscale Thermal Images and Convolutional Neural Network

被引:3
作者
Yakkati, Rakesh Reddy [1 ]
Yeduri, Sreenivasa Reddy [2 ]
Cenkeramaddi, Linga Reddy [2 ]
机构
[1] Birla Inst Technol, Dept Math, Mesra 835215, Jharkhand, India
[2] Univ Agder, Dept ICT, ACPS Res Grp, N-4879 Grimstad, Norway
来源
2021 IEEE INTERNATIONAL SYMPOSIUM ON SMART ELECTRONIC SYSTEMS (ISES 2021) | 2021年
关键词
Convolution neural network; image classification; hand gesture; classification accuracy; inference time;
D O I
10.1109/iSES52644.2021.00035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a convolutional neural network for classifying grayscale images of hand gestures in this paper. We look at ten different hand gestures collected from various people using a thermal camera for classification. The proposed model's performance in terms of classification accuracy and inference lime is then compared to that of other benchmark models. Using extensive results, we show that the proposed model achieves higher classification accuracy while using a smaller model size. In terms of inference time, we show that the proposed model outperforms benchmark models.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 2007, 2007 IEEE C COMP VIS
[2]  
Aplin P, 1999, IN PRESS
[3]  
Breland D. S., IEEE SENS J, V21, P2021
[4]  
Wang C, 2009, PROC CVPR IEEE, P1903, DOI [10.1109/CVPR.2009.5206800, 10.1109/CVPRW.2009.5206800]
[5]  
Dayal A, ELECTRONICS, V10, P2021
[6]  
Dayal A., RADAR CLASSIFICATION
[7]  
FLIR Systems, FLIR LEPT 3 3 5
[8]   Remote sensing and land cover area estimation [J].
Gallego, FJ .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (15) :3019-3047
[9]   LAND-USE CLASSIFICATION OF SPOT HRV DATA USING A COVER-FREQUENCY METHOD [J].
GONG, P ;
HOWARTH, PJ .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (08) :1459-1471
[10]   A survey of image classification methods and techniques for improving classification performance [J].
Lu, D. ;
Weng, Q. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (05) :823-870