Study of mesenchymal stem cells cultured on a poly(lactic-co-glycolic acid) scaffold containing simvastatin for bone healing

被引:26
作者
Mendes Junior, Dario [1 ]
Domingues, Juliana A. [1 ,2 ]
Hausen, Moema A.
Cattani, Silvia M. M. [1 ]
Aragones, Aguedo [3 ]
Oliveira, Alexandre L. R. [2 ]
Inacio, Rodrigo F. [2 ]
Barbo, Maria L. P. [1 ]
Duek, Eliana A. R. [1 ,3 ]
机构
[1] Pontif Catholic Univ, Biomat Lab, Dept Physiol Sci, Sao Paulo, Brazil
[2] Univ Estadual Campinas, Biol Inst, Dept Cell Biol & Struct Biol, Sao Paulo, Brazil
[3] Univ Estadual Campinas, Fac Mech Engn, Dept Mat Engn, Sao Paulo, Brazil
来源
JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS | 2017年 / 15卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Bone regeneration; Mesenchymal stem cell; PLGA; Simvastatin; MARROW STROMAL CELLS; IN-VITRO; OSTEOGENIC DIFFERENTIATION; TRICALCIUM PHOSPHATE; CONTROLLED-RELEASE; CALVARIAL DEFECTS; PLGA; MICROSPHERES; MEVALONATE; RESPONSES;
D O I
10.5301/jabfm.5000338
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background: Tissue engineering is a promising alternative for the development of bone substitutes; for this purpose, three things are necessary: stem cells, a scaffold to allow tissue growth and factors that induce tissue regeneration. Methods: To congregate such efforts, we used the bioresorbable and biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) as scaffold. For the osteoinductive factor, we used simvastatin (SIM), a drug with a pleiotropic effect on bone growth. Mesenchymal stem cells (MSCs) were cultured in PLGA containing SIM, and the bone substitute of PLGA/SIM/MSC was grafted into critical defects of rat calvaria. Results: The in vitro results showed that SIM directly interfered with the proliferation of MSC promoting cell death, while in the pure PLGA scaffold the MSC grew continuously. Scaffolds were implanted in the calvaria of rats and separated into groups: control (empty defect), PLGA pure, PLGA/SIM, PLGA/MSC and PLGA/SIM/MSC. The increase in bone growth was higher in the PLGA/SIM group. Conclusions: We observed no improvement in the growth of bone tissue after implantation of the PLGA/SIM/ MSC scaffold. As compared with in vitro results, our main hypothesis is that the microarchitecture of PLGA associated with low SIM release would have created an in vivo microenvironment of concentrated SIM that might have induced MSC death. However, our findings indicate that once implanted, both PLGA/SIM and PLGA/MSC contributed to bone formation. We suggest that strategies to maintain the viability of MSCs after cultivation in PLGA/SIM will contribute to improvement of bone regeneration.
引用
收藏
页码:E133 / E141
页数:9
相关论文
共 40 条
  • [1] [Anonymous], 2015, J APPL MATH
  • [2] The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells
    Baek, KH
    Lee, WY
    Oh, KW
    Tae, HJ
    Lee, JM
    Lee, EJ
    Han, JH
    Kang, MI
    Cha, BY
    Lee, KW
    Son, HY
    Kang, SK
    [J]. JOURNAL OF KOREAN MEDICAL SCIENCE, 2005, 20 (03) : 438 - 444
  • [3] The International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS)-quality of life during the first 4 months after fracture
    Borgstrom, F.
    Lekander, I.
    Ivergard, M.
    Strom, O.
    Svedbom, A.
    Alekna, V.
    Bianchi, M. L.
    Clark, P.
    Curiel, M. D.
    Dimai, H. P.
    Jurisson, M.
    Kallikorm, R.
    Lesnyak, O.
    McCloskey, E.
    Nassonov, E.
    Sanders, K. M.
    Silverman, S.
    Tamulaitiene, M.
    Thomas, T.
    Tosteson, A. N. A.
    Jonsson, B.
    Kanis, J. A.
    [J]. OSTEOPOROSIS INTERNATIONAL, 2013, 24 (03) : 811 - 823
  • [4] Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway
    Chen, Pei-Yu
    Sun, Jui-Sheng
    Tsuang, Yang-Hwei
    Chen, Ming-Hong
    Weng, Pei-Wei
    Lin, Feng-Huei
    [J]. NUTRITION RESEARCH, 2010, 30 (03) : 191 - 199
  • [5] BONE TISSUE ENGINEERING
    CRANE, GM
    ISHAUG, SL
    MIKOS, AG
    [J]. NATURE MEDICINE, 1995, 1 (12) : 1322 - 1324
  • [6] Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin
    Cui Yueyi
    Han Xiaoguang
    Wang Jingying
    Song Quansheng
    Tan Jie
    Fu Xin
    Xu Yingsheng
    Song Chunli
    [J]. BIOMATERIALS, 2013, 34 (37) : 9373 - 9380
  • [7] Development, characterization and clinical use of a biodegradable composite scaffold for bone engineering in oro-maxillo-facial surgery
    Davies, John E.
    Matta, Rano
    Mendes, Vanessa C.
    Perri de Carvalho, Paulo S.
    [J]. ORGANOGENESIS, 2010, 6 (03) : 161 - 166
  • [8] Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
    Dominici, M.
    Le Blanc, K.
    Mueller, I.
    Slaper-Cortenbach, I.
    Marini, F. C.
    Krause, D. S.
    Deans, R. J.
    Keating, A.
    Prockop, D. J.
    Horwitz, E. M.
    [J]. CYTOTHERAPY, 2006, 8 (04) : 315 - 317
  • [9] Fan JB, 2015, TISSUE ENG PT A, V21, P2053, DOI [10.1089/ten.tea.2014.0489, 10.1089/ten.TEA.2014.0489]
  • [10] GMP-Compliant Isolation and Large-Scale Expansion of Bone Marrow-Derived MSC
    Fekete, Natalie
    Rojewski, Markus T.
    Fuerst, Daniel
    Kreja, Ludwika
    Ignatius, Anita
    Dausend, Julia
    Schrezenmeier, Hubert
    [J]. PLOS ONE, 2012, 7 (08):