Biased random walk in a one-dimensional percolation model

被引:8
|
作者
Axelson-Fisk, Marina [1 ]
Haggstrom, Olle [1 ]
机构
[1] Chalmers, Dept Math, S-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Percolation; Random walk; Asymptotic speed; INVARIANCE-PRINCIPLE; CLUSTERS;
D O I
10.1016/j.spa.2009.06.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider random walk with a nonzero bias to the right, on the infinite cluster in the following percolation model: take i.i.d. bond percolation with retention parameter p on the so-called infinite ladder, and condition on the event of having a bi-infinite path from -infinity to infinity. The random walk is shown to be transient, and to have in asymptotic speed to the right which is strictly positive or zero depending on whether the bias is below or above a certain critical value which we compute explicitly. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3395 / 3415
页数:21
相关论文
共 50 条
  • [1] The speed of critically biased random walk in a one-dimensional percolation model
    Luebbers, Jan-Erik
    Meiners, Matthias
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [2] Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model
    Nina Gantert
    Matthias Meiners
    Sebastian Müller
    Journal of Statistical Physics, 2018, 170 : 1123 - 1160
  • [3] Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model
    Gantert, Nina
    Meiners, Matthias
    Mueller, Sebastian
    JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (06) : 1123 - 1160
  • [4] Einstein Relation for Random Walk in a One-Dimensional Percolation Model
    Gantert, Nina
    Meiners, Matthias
    Mueller, Sebastian
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (04) : 737 - 772
  • [5] Einstein Relation for Random Walk in a One-Dimensional Percolation Model
    Nina Gantert
    Matthias Meiners
    Sebastian Müller
    Journal of Statistical Physics, 2019, 176 : 737 - 772
  • [6] Analytic study of the effect of persistence on a one-dimensional biased random walk
    Pottier, N
    PHYSICA A, 1996, 230 (3-4): : 563 - 576
  • [7] BIASED RANDOM WALK ON DYNAMICAL PERCOLATION
    Andres, Sebastian
    Gantert, Nina
    Schmid, Dominik
    Sous, Perla
    ANNALS OF PROBABILITY, 2024, 52 (06): : 2051 - 2078
  • [8] On the Height of One-Dimensional Random Walk
    Abdelkader, Mohamed
    MATHEMATICS, 2023, 11 (21)
  • [9] Erosion by a one-dimensional random walk
    Chisholm, Rebecca H.
    Hughes, Barry D.
    Landman, Kerry A.
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [10] SCALING BEHAVIOR FOR BIASED DIFFUSION IN A ONE-DIMENSIONAL BOND-PERCOLATION MODEL
    BALAKRISHNAN, V
    KHANTHA, M
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (14): : L351 - L355