Reflection Coefficients of Polynomials and Stable Polytopes

被引:5
作者
Nurges, Uelo [1 ]
机构
[1] Tallinn Univ Technol, Inst Cybernet, EE-12611 Tallinn, Estonia
关键词
Discrete-time systems; polynomials; stability; SCHUR-STABILITY; SYSTEMS; STABILIZATION;
D O I
10.1109/TAC.2009.2015537
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The geometry of stable discrete polynomials using their coefficients and reflection coefficients is investigated. Two linear Schur invariant transformations with a free parameter in the polynomial coefficient space are introduced. The first transformation R-n X R -> R-n maps an arbitrary stable polytope into another stable polytope. The second transformation R-n X R -> Rn+1 maps a stable tilted n-dimensional hyperrectangle defined by the discrete Kharitonov theorem into a stable (n + 1)-dimensional polytope.
引用
收藏
页码:1314 / 1318
页数:5
相关论文
共 19 条
[1]  
Ackermann J., 1993, Robust Control. Systems with Uncertain Physical Parameters
[2]   A SURVEY OF EXTREME POINT RESULTS FOR ROBUSTNESS OF CONTROL-SYSTEMS [J].
BARMISH, BR ;
KANG, HI .
AUTOMATICA, 1993, 29 (01) :13-35
[3]  
Bartlett A. C., 1988, Mathematics of Control, Signals and Systems, V1, P61, DOI [DOI 10.1007/BF02551236, 10.1007/BF02551236]
[5]  
BUELER B, 1998, POLYTOPES COMBINATOR, P1
[6]   Ellipsoidal bounds for uncertain linear equations and dynamical systems [J].
Calafiore, G ;
El Ghaoui, L .
AUTOMATICA, 2004, 40 (05) :773-787
[7]  
Diaz-Barrero J. L., 2004, APPL MATH E NOTES, V4, P114
[8]   Necessary conditions for Schur-stability of interval polynomials [J].
Greiner, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) :740-744
[9]   Ellipsoidal approximation of the stability domain of a polynomial [J].
Henrion, D ;
Peaucelle, D ;
Arzelier, D ;
Sebek, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (12) :2255-2259
[10]   Positive polynomials and robust stabilization with fixed-order controllers [J].
Henrion, D ;
Sebek, M ;
Kucera, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (07) :1178-1186