Compact Normal Form for Regular Languages as Xor Automata

被引:0
作者
Vuillemin, Jean [1 ,2 ]
Gama, Nicolas [1 ,2 ]
机构
[1] Ecole Normale Super, Paris, France
[2] INRIA, Paris, France
来源
IMPLEMENTATION AND APPLICATION OF AUTOMATA, PROCEEDINGS | 2009年 / 5642卷
关键词
FINITE AUTOMATA;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The only presently known normal form for a regular language L is an element of Reg is its Minimal Deterministic Automaton MDA(L). We show that a regular language is also characterized by a finite dimension dim(L), which is always smaller than the number [MDA(L)] of states, and often exponentially so. The dimension is also the minimal number of states of all Nondeterministic Xor Automaton (NXA) which accept the language. NXAs combine the advantages of deterministic automata (normal form, negation, minimization, equivalence of states, accessibility) and of nondeterministic ones (compactness, mirror language). We present an algorithmic construction of the Minimal Non Deterministic Xor Automaton MXA(L), in cubic time from any NXA for L is an element of Reg. The MXA provides another normal form: L = L' double left right arrow MXA(L) = MXA(L'). Our algorithm establishes a missing connection between Brzozowski's mirror-based minimization method for deterministic automata, and algorithms based on state-equivalence.
引用
收藏
页码:24 / +
页数:2
相关论文
共 17 条
[1]  
BERSTEL J, 1988, EATCS MONOGRAPH
[2]  
Brzozowski J.A., 1962, MRI Symposia Series, V12, P529
[3]  
Domaratzki M., 2002, Journal of Automata, Languages and Combinatorics, V7, P469
[4]  
FLIESS M, 1974, J MATH PURE APPL, V53, P197
[5]  
Huffman D.A., 1955, J SYMBOLIC LOGIC, V20, P69
[6]   MINIMAL NFA PROBLEMS ARE HARD [J].
JIANG, T ;
RAVIKUMAR, B .
SIAM JOURNAL ON COMPUTING, 1993, 22 (06) :1117-1141
[7]   ON STATE MINIMIZATION OF NONDETERMINISTIC FINITE AUTOMATA [J].
KAMEDA, T ;
WEINER, P .
IEEE TRANSACTIONS ON COMPUTERS, 1970, C 19 (07) :617-&
[8]  
MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
[9]  
Mohri M, 2009, MONOGR THEOR COMPUT, P213, DOI 10.1007/978-3-642-01492-5_6
[10]  
Moore E.F., 1958, J SYMBOLIC LOGIC, V23, P60