Photonic Anomalous Quantum Hall Effect

被引:69
作者
Mittal, Sunil [1 ,2 ,3 ]
Orre, Venkata Vikram [1 ,2 ,3 ]
Leykam, Daniel [4 ]
Chong, Y. D. [5 ,6 ]
Hafezi, Mohammad [1 ,2 ,3 ,7 ]
机构
[1] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] Univ Maryland, IREAP, College Pk, MD 20742 USA
[4] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[6] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 637371, Singapore
[7] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
关键词
TRANSITION;
D O I
10.1103/PhysRevLett.123.043201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We experimentally realize a photonic analogue of the anomalous quantum Hall insulator using a two-dimensional (2D) array of coupled ring resonators. Similar to the Haldane model, our 2D array is translation invariant, has a zero net gauge flux threading the lattice, and exploits next-nearest neighbor couplings to achieve a topologically nontrivial band gap. Using direct imaging and on-chip transmission measurements, we show that the band gap hosts topologically robust edge states. We demonstrate a topological phase transition to a conventional insulator by frequency detuning the ring resonators and thereby breaking the inversion symmetry of the lattice. Furthermore, the clockwise or the counterclockwise circulation of photons in the ring resonators constitutes a pseudospin degree of freedom. The two pseudospins acquire opposite hopping phases, and their respective edge states propagate in opposite directions. These results are promising for the development of robust reconfigurable integrated nanophotonic devices for applications in classical and quantum information processing.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Nonreciprocal lasing in topological cavities of arbitrary geometries [J].
Bahari, Babak ;
Ndao, Abdoulaye ;
Vallini, Felipe ;
El Amili, Abdelkrim ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
SCIENCE, 2017, 358 (6363) :636-639
[2]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[3]   A topological quantum optics interface [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Flower, Christopher ;
Cai, Tao ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Hafezi, Mohammad ;
Waks, Edo .
SCIENCE, 2018, 359 (6376) :666-668
[4]   Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide [J].
Chen, Wen-Jie ;
Jiang, Shao-Ji ;
Chen, Xiao-Dong ;
Zhu, Baocheng ;
Zhou, Lei ;
Dong, Jian-Wen ;
Chan, C. T. .
NATURE COMMUNICATIONS, 2014, 5
[5]  
Cheng XJ, 2016, NAT MATER, V15, P542, DOI [10.1038/nmat4573, 10.1038/NMAT4573]
[6]  
Gao F, 2018, NAT PHYS, V14, P140, DOI [10.1038/NPHYS4304, 10.1038/nphys4304]
[7]   Topological Phases of Non-Hermitian Systems [J].
Gong, Zongping ;
Ashida, Yuto ;
Kawabata, Kohei ;
Takasan, Kazuaki ;
Higashikawa, Sho ;
Ueda, Masahito .
PHYSICAL REVIEW X, 2018, 8 (03)
[8]   Far-field probing of leaky topological states in all-dielectric metasurfaces [J].
Gorlach, Maxim A. ;
Ni, Xiang ;
Smirnova, Daria A. ;
Korobkin, Dmitry ;
Zhirihin, Dmitry ;
Slobozhanyuk, Alexey P. ;
Belov, Pavel A. ;
Alu, Andrea ;
Khanikaev, Alexander B. .
NATURE COMMUNICATIONS, 2018, 9
[9]  
Hafezi M, 2013, NAT PHOTONICS, V7, P1001, DOI [10.1038/nphoton.2013.274, 10.1038/NPHOTON.2013.274]
[10]  
Hafezi M, 2011, NAT PHYS, V7, P907, DOI [10.1038/NPHYS2063, 10.1038/nphys2063]