Photonic Anomalous Quantum Hall Effect

被引:67
|
作者
Mittal, Sunil [1 ,2 ,3 ]
Orre, Venkata Vikram [1 ,2 ,3 ]
Leykam, Daniel [4 ]
Chong, Y. D. [5 ,6 ]
Hafezi, Mohammad [1 ,2 ,3 ,7 ]
机构
[1] Univ Maryland, Joint Quantum Inst, NIST, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] Univ Maryland, IREAP, College Pk, MD 20742 USA
[4] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[6] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 637371, Singapore
[7] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
关键词
TRANSITION;
D O I
10.1103/PhysRevLett.123.043201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We experimentally realize a photonic analogue of the anomalous quantum Hall insulator using a two-dimensional (2D) array of coupled ring resonators. Similar to the Haldane model, our 2D array is translation invariant, has a zero net gauge flux threading the lattice, and exploits next-nearest neighbor couplings to achieve a topologically nontrivial band gap. Using direct imaging and on-chip transmission measurements, we show that the band gap hosts topologically robust edge states. We demonstrate a topological phase transition to a conventional insulator by frequency detuning the ring resonators and thereby breaking the inversion symmetry of the lattice. Furthermore, the clockwise or the counterclockwise circulation of photons in the ring resonators constitutes a pseudospin degree of freedom. The two pseudospins acquire opposite hopping phases, and their respective edge states propagate in opposite directions. These results are promising for the development of robust reconfigurable integrated nanophotonic devices for applications in classical and quantum information processing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Photonic versus electronic quantum anomalous Hall effect
    Bleu, O.
    Solnyshkov, D. D.
    Malpuech, G.
    PHYSICAL REVIEW B, 2017, 95 (11)
  • [2] Quantum anomalous Hall effect
    Ke He
    Yayu Wang
    Qi-Kun Xuea
    National Science Review, 2014, 1 (01) : 38 - 48
  • [3] Anomalous and Quantum Hall Effects in Lossy Photonic Lattices
    Ozawa, Tomoki
    Carusotto, Iacopo
    PHYSICAL REVIEW LETTERS, 2014, 112 (13)
  • [4] Anomalous Quantum Hall Effect of Light in Bloch-Wave Modulated Photonic Crystals
    Fang, Kejie
    Wang, Yunkai
    PHYSICAL REVIEW LETTERS, 2019, 122 (23)
  • [5] Observing the quantum anomalous Hall effect
    Wang, Ling
    Ma, Xucun
    He, Ke
    NATIONAL SCIENCE REVIEW, 2014, 1 (01) : 60 - 61
  • [6] On the Nature of the Quantum Anomalous Hall Effect
    Fijalkowski, K. M.
    Grauer, S.
    Schreyeck, S.
    Winnerlein, M.
    Brunner, K.
    Thomale, R.
    Gould, C.
    Molenkamp, L. W.
    2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [7] The quantum anomalous Hall effect reloaded
    Pacchioni, Giulia
    NATURE REVIEWS MATERIALS, 2021, 6 (11) : 968 - 968
  • [8] Observing the quantum anomalous Hall effect
    Ling Wang
    NationalScienceReview, 2014, 1 (01) : 60 - 61
  • [9] Anomalous quantum Hall effect on sphere
    Jellal, Ahmed
    NUCLEAR PHYSICS B, 2008, 804 (03) : 361 - 382
  • [10] The quantum anomalous Hall effect reloaded
    Giulia Pacchioni
    Nature Reviews Materials, 2021, 6 : 968 - 968