Global classical solutions to the Cauchy problem of conservation laws with degenerate diffusion

被引:11
作者
Chen, Jiao [1 ]
Li, Yachun [2 ,3 ]
Wang, Weike [2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, MOE LSC, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, SHL MAC, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Classical solution; Global existence; Conservation law; Degenerate diffusion; Frequency decomposition method; Green's function method; ENTROPY SOLUTIONS; PARABOLIC EQUATIONS; UNIQUENESS; STABILITY;
D O I
10.1016/j.jde.2015.11.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence of the unique global classical solution with small initial data to the Cauchy problem of a scalar conservation law with degenerate diffusion by establishing the uniform a priori decay estimates of solutions. In order to compensate the degeneracy on the xi direction by the diffusion on other directions, we introduce the frequency decomposition method and obtain the low frequency estimate and the high frequency estimate of the solution by the Green's function method and energy method respectively. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:4657 / 4682
页数:26
相关论文
共 18 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
[Anonymous], POROUS MEDIUM EQUATI
[3]  
[Anonymous], NE MATH J
[4]   Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations [J].
Bendahmane, M ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) :405-422
[5]  
Bustos M.C., 1999, SEDIMENTATION THICKI
[6]   Entropy solutions for nonlinear degenerate problems [J].
Carrillo, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) :269-361
[7]   L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations [J].
Chen, GQ ;
Karlsen, KH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :937-963
[8]   Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients [J].
Chen, GQ ;
Karlsen, KH .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (02) :241-266
[9]   Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations [J].
Chen, GQ ;
Perthame, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04) :645-668
[10]   Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations [J].
Chen, GQ ;
Dibenedetto, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (04) :751-762