A SINGULAR CAHN-HILLIARD-OONO PHASE-FIELD SYSTEM WITH HEREDITARY MEMORY

被引:0
作者
Conti, Monica [1 ]
Gatti, Stefania [2 ]
Miranville, Alain [3 ,4 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-B, I-41125 Modena, Italy
[3] Univ Poitiers, Lab Math & Applicat, CNRS, UMR 7348,SP2MI, Blvd Marie & Pierre Curie Teleport 2, F-86962 Futuroscope, France
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Phase-field models; Cahn-Hilliard and Oono equations; memory effects; singular potential; strict separation property; EXPONENTIAL ATTRACTORS; EQUATIONS; DYNAMICS;
D O I
10.3934/dcds.2018132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a phase-field system modeling phase transition phenomena, where the Cahn-Hilliard-Oono equation for the order parameter is coupled with the Coleman-Gurtin heat law for the temperature. The former suitably describes both local and nonlocal (long-ranged) interactions in the material undergoing phase-separation, while the latter takes into account thermal memory effects. We study the well-posedness and longtime behavior of the corresponding dynamical system in the history space setting, for a class of physically relevant and singular potentials. Besides, we investigate the regularization properties of the solutions and, for sufficiently smooth data, we establish the strict separation property from the pure phases.
引用
收藏
页码:3033 / 3054
页数:22
相关论文
共 28 条
[1]  
[Anonymous], 1997, INFINITE DIMENSIONAL
[2]  
[Anonymous], 2001, Adv. Math. Sci. Appl.
[3]  
Brochet D., 1993, Pitman Res. Notes Math. Ser, V296, P77
[4]  
Brochet D., 1996, Adv. Diff. Eqns, V1, P547
[5]   THE DYNAMICS OF A CONSERVED PHASE FIELD SYSTEM - STEFAN-LIKE, HELE-SHAW, AND CAHN-HILLIARD MODELS AS ASYMPTOTIC LIMITS [J].
CAGINALP, G .
IMA JOURNAL OF APPLIED MATHEMATICS, 1990, 44 (01) :77-94
[6]   CONSERVED-PHASE FIELD SYSTEM - IMPLICATIONS FOR KINETIC UNDERCOOLING [J].
CAGINALP, G .
PHYSICAL REVIEW B, 1988, 38 (01) :789-791
[7]   ON SPINODAL DECOMPOSITION [J].
CAHN, JW .
ACTA METALLURGICA, 1961, 9 (09) :795-801
[8]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[9]   EQUIPRESENCE AND CONSTITUTIVE EQUATIONS FOR RIGID HEAT CONDUCTORS [J].
COLEMAN, BD ;
GURTIN, ME .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1967, 18 (02) :199-&
[10]   Singular limit of differential systems with memory [J].
Conti, M ;
Pata, V ;
Squassina, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) :169-215