A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries

被引:245
|
作者
Liao, Zhenghai [1 ,2 ]
Zhang, Shen [3 ]
Li, Kang [2 ]
Zhang, Guoqiang [1 ,2 ]
Habetler, Thomas G. [3 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Thermal runaway; Monitoring and detection; Sensor measurement; Protection; Application safety; POSITIVE-ELECTRODE MATERIALS; HIGH-ENERGY DENSITY; LI-ION; CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; INTERNAL TEMPERATURE; MANAGEMENT-SYSTEMS; HIGH-POWER; DEGRADATION MECHANISMS; STRUCTURAL STABILITY;
D O I
10.1016/j.jpowsour.2019.226879
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion batteries have many advantages such as the high specific energy, the high specific power, the long calendar life, being environmentally friendly, and can be used without the memory effect. Thus this type of battery is widely used as the core component in many applications such as electric vehicles, portable electronic devices, and distributed energy storage systems. However, lithium-ion batteries can easily develop into thermal runaways due to the stress and abuse from mechanical, electrical, and thermal perspectives, posing a major threat to the overall safety of many battery systems. On the premise of passing the manufacturer's safety inspections, a variety of methods for monitoring and detecting thermal runaway events are developed to enhance the safety and robustness of lithium-ion batteries in different application scenarios. This paper thus summarizes the existing literature on this topic and presents a comparative study on the sensitivity of various monitoring and detection methods. Potential future research directions are also discussed in detail to further enhance the safety and robustness of lithium-ion battery systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516
  • [2] Monitoring thermal runaway of lithium-ion batteries by means of gas sensors
    Wang, Xiao-Xue
    Li, Qiu-Tong
    Zhou, Xiao-Yan
    Hu, Yi-Ming
    Guo, Xin
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 411
  • [3] Mitigating Thermal Runaway of Lithium-Ion Batteries
    Feng, Xuning
    Ren, Dongsheng
    He, Xiangming
    Ouyang, Minggao
    JOULE, 2020, 4 (04) : 743 - 770
  • [4] Review of Thermal Runaway Monitoring, Warning and Protection Technologies for Lithium-Ion Batteries
    Yin, Sumiao
    Liu, Jianghong
    Cong, Beihua
    PROCESSES, 2023, 11 (08)
  • [5] MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES
    Khan, Shehzad
    Anwar, Sohail
    Casa, Jairo
    Hasnain, Muhammad
    Ahmed, Hossain
    Sezer, Hayri
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
  • [6] A model for the prediction of thermal runaway in lithium-ion batteries
    Azuaje-Berbeci, Bernardo J.
    Ertan, H. Bulent
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [7] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [8] Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference
    Dubois, Eric Ravindranath
    Kherbouchi, Hocine
    Bosson, Joel
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2020, 62 (05) : 2096 - 2100
  • [9] Applied method to model the thermal runaway of lithium-ion batteries
    Lalinde, Inaki
    Berrueta, Alberto
    Sanchis, Pablo
    Ursua, Alfredo
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [10] Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles
    Liubin Song
    Youhang Zheng
    Zhongliang Xiao
    Cheng Wang
    Tianyuan Long
    Journal of Electronic Materials, 2022, 51 : 30 - 46