The central limit theorem for Euclidean minimal spanning trees II

被引:17
作者
Lee, S [1 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
minimal spanning tree; central limit theorem; continuum percolation;
D O I
10.1017/S0001867800009551
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-i : i greater than or equal to 1) be i.i.d. points in R-d, d greater than or equal to 2, and let T-n be a minimal spanning tree on {X-1,...,X-n}. Let L({X-1,...,X-n}) be the length of T-n and for each strictly positive integer ct let N({X-1,..., X-n}; alpha) be the number of vertices of degree alpha in T-n. If the common distribution satisfies certain regularity conditions, then we prove central limit theorems for L({X-1,..., X-n}) and N({X-1,..., X-n}; alpha). We also study the rate of convergence for EL ({X-1,..., X-n}) AMS 1991 Subject Classification: Primary 60D05; 60F05 Secondary 60K35; 05C05; 90C27.
引用
收藏
页码:969 / 984
页数:16
相关论文
共 13 条
[1]   RATES OF CONVERGENCE OF MEANS FOR DISTANCE-MINIMIZING SUBADDITIVE EUCLIDEAN FUNCTIONALS [J].
Alexander, Kenneth S. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (03) :902-922
[2]   SIMULTANEOUS UNIQ(H)UENESS OF INFINITE CLUSTERS IN STATIONARY RANDOM LABELED GRAPHS [J].
ALEXANDER, KS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (01) :39-55
[3]   MULTIVARIATE GENERALIZATIONS OF THE WALD-WOLFOWITZ AND SMIRNOV 2-SAMPLE TESTS [J].
FRIEDMAN, JH ;
RAFSKY, LC .
ANNALS OF STATISTICS, 1979, 7 (04) :697-717
[4]   GRAPH-THEORETIC MEASURES OF MULTIVARIATE ASSOCIATION AND PREDICTION [J].
FRIEDMAN, JH ;
RAFSKY, LC .
ANNALS OF STATISTICS, 1983, 11 (02) :377-391
[5]  
HALL P, 1980, MARTINGALE LIMIT THE
[6]   RATE OF CONVERGENCE FOR THE EUCLIDEAN MINIMUM SPANNING TREE LIMIT LAW [J].
JAILLET, P .
OPERATIONS RESEARCH LETTERS, 1993, 14 (02) :73-78
[7]  
Lee S, 1997, ANN APPL PROBAB, V7, P996
[8]  
LEVY P. P, 1937, Theorie de L'Addition des Variables Aleatoires
[9]   DEPENDENT CENTRAL LIMIT THEOREMS AND INVARIANCE PRINCIPLES [J].
MCLEISH, DL .
ANNALS OF PROBABILITY, 1974, 2 (04) :620-628
[10]   SHORTEST CONNECTION NETWORKS AND SOME GENERALIZATIONS [J].
PRIM, RC .
BELL SYSTEM TECHNICAL JOURNAL, 1957, 36 (06) :1389-1401