Disjoint Blocks in a MOL(6)

被引:2
作者
Betten, Dieter [1 ]
机构
[1] Univ Kiel, Math Sem, Ludewig Meyn Str 4, D-24098 Kiel, Germany
关键词
(05B15=) Orthogonal arrays; Latin squares; Room squares (05B30=) Other designs; configurations;
D O I
10.1007/s00025-020-01311-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the maximal number of pairwise disjoint 4-blocks in a MOL(6) is 3. We recall various proofs for the non-existence of a MOL(6) and show: with the theorem the proofs can be simplified considerably.
引用
收藏
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1974, Latin squares and their applications
[2]  
Beth Th., 1985, DESIGN THEORY BIBL I
[3]  
Betten A., 2001, P EUR C ALG COMB APP, P40
[4]   There Is No Drake/Larson Linear Space on 30 Points [J].
Betten, Anton ;
Betten, Dieter .
JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (01) :48-70
[5]  
Betten D., 1992, Ann. Disc. Math., V52, P37
[6]  
Betten D, 2019, MITTEILUNGEN MATH GE, V39, P1
[7]  
Betten D., 1983, MATH NATURWISSENSCHA, V36, P449
[8]  
Betten D., 1984, MITTEILUNGEN MATH SE, V136, P181
[9]  
Colbourn CJ., 1996, CRC HDB COMBINATORIA, DOI [10.1201/9781420049954, DOI 10.1201/9781420049954]
[10]  
Euler L, 1782, L EULERI OPERA 1, V7, P291