Amenability of countable groups and actions on Cantor sets

被引:6
作者
Giordano, T [1 ]
delaHarpe, P [1 ]
机构
[1] SECT MATH,CH-1211 GENEVA 24,SWITZERLAND
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 324卷 / 11期
关键词
D O I
10.1016/S0764-4442(99)80409-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question of R. Grigorchuk by showing the following characterization: for a countable group Gamma to be amenable, it is necessary and sufficient that any continuous action of Gamma on the Canter set has an invariant probability measure. The proof uses an easy variation of a classical result of Alexandroff and Urysohn: any metrisable Gamma-space is an equivariant subjective image of a Gamma-Cantor set.
引用
收藏
页码:1255 / 1258
页数:4
相关论文
共 14 条
[1]  
ALEXANDROFF P, 1935, TOPOLOGIE ERSTER BAN
[2]  
ALEXANDROFF PS, 1929, VERH AKAD WETENSCH A, V14, P1
[3]  
ANOSOV DV, 1994, RUSS MATH SURV, V49, P5
[4]  
BESTVINA M, 1988, MEM AM MATH SOC, P380
[5]  
BOGOLYUBOV NN, 1969, SELECTED WORKS, V1, P561
[6]  
BOGOLYUBOV NN, 1939, NAUCH ZAP KIEV U PHY, V4, P45
[7]  
EYMARD P, 1975, LECT NOTES MATH, V457, P89
[8]  
Greenleaf F., 1969, NOSTRAND MATH STUD S, V16
[9]  
HAUSDORFF F, 1935, MENGENLEHRE DRITTE A
[10]  
Mann L.N., 1963, T AM MATH SOC, V106, P115