Influence of sanguinarine-based phytobiotic supplementation on post necrotic enteritis challenge recovery

被引:14
作者
Aljumaah, Mashael R. [1 ]
Alkhulaifi, Manal M. [1 ]
Aljumaah, Riyadh S. [2 ]
Abudabos, Alaeldein M. [2 ]
Abdullatif, Abdulaziz A. [2 ]
Suliman, Gamaleldin M. [2 ]
Al-Ghadi, Mu'ath Q. [3 ]
Stanley, Dragana [4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Bot & Microbiol, Riyadh, Saudi Arabia
[2] King Saud Univ, Coll Food & Agr Sci, Dept Anim Prod, Riyadh, Saudi Arabia
[3] King Saud Univ, Coll Sci, Dept Zool, Riyadh, Saudi Arabia
[4] Cent Queensland Univ, Inst Future Farming Syst, Rockhampton, Qld, Australia
关键词
Microbiology; Food safety; Food microbiology; Nutrition; Infectious disease; Sanguinarine; Phytobiotic; Necrotic enteritis; Broiler; Intestine; CHAIN FATTY-ACIDS; GROWTH-PERFORMANCE; DIETARY SUPPLEMENTATION; INTESTINAL MICROBIOTA; MACLEAYA-CORDATA; IMMUNE-RESPONSE; ALKALOIDS; CHICKENS; DNA; QUANTIFICATION;
D O I
10.1016/j.heliyon.2020.e05361
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the animal production industry, plant-derived antimicrobial phytobiotics are used as an alternative to antibiotics. Here we investigated the role sanguinarine-based phytobiotic in broiler recovery from Necrotic Enteritis (NE) infection. A total of 100 one-day-old broiler chicks (Ross 308) were randomly allocated to four treatments: negative control CTR (no challenge, no phytobiotic supplementation); positive control NE (NE challenged); phytobiotic SG (sanguinarine phytobiotic, 0.12 g/kg); and SG thorn NE, (sanguinarine phytobiotic, 0.12 g/kg and NE challenge). Sanguinarine-based phytobiotic supplementation caused significant changes between the groups in performance, livability and histological measurements, however, these changes were not significantly different between SG thorn NE and NE groups. Significant improvement was detected in NE lesion score of the duodenum and ileum of SG thorn NE birds compared to NE challenged birds at the end of the production cycle at 40 days old, indicating improved post-NE recovery with the addition of phytobiotic. Sanguinarine-based phytobiotic supplementation in NE challenged birds significantly compensated for a NE associated reduction of Firmicutes and an increase in Bacteroidetes. Functional profile of sanguinarine-based phytobiotic supplemented birds microbiota was distinct from CTR functional profile. NE challenge was associated with a significant increase in cecal propionic acid, while sanguinarine-based phytobiotic supplementation resulted in an increase in cecal acetic acid.
引用
收藏
页数:10
相关论文
共 63 条
  • [1] Abou-Bakr S., 2011, INT J ACAD RES, V3
  • [2] The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium
    Abudabos, Alaeldein M.
    Alyemni, Abdullah H.
    Dafalla, Yousif M.
    Khan, Rifat Ullah
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (23) : 24151 - 24157
  • [3] Bacillus subtilisPB6 based probiotic supplementation plays a role in the recovery after the necrotic enteritis challenge
    Aljumaah, Mashael R.
    Alkhulaifi, Manal M.
    Abudabos, Alaeldein M.
    Aljumaah, Riyadh S.
    Alsaleh, Asma N.
    Stanley, Dragana
    [J]. PLOS ONE, 2020, 15 (06):
  • [4] Essential oils in poultry nutrition: Main effects and modes of action
    Brenes, A.
    Roura, E.
    [J]. ANIMAL FEED SCIENCE AND TECHNOLOGY, 2010, 158 (1-2) : 1 - 14
  • [5] QIIME allows analysis of high-throughput community sequencing data
    Caporaso, J. Gregory
    Kuczynski, Justin
    Stombaugh, Jesse
    Bittinger, Kyle
    Bushman, Frederic D.
    Costello, Elizabeth K.
    Fierer, Noah
    Pena, Antonio Gonzalez
    Goodrich, Julia K.
    Gordon, Jeffrey I.
    Huttley, Gavin A.
    Kelley, Scott T.
    Knights, Dan
    Koenig, Jeremy E.
    Ley, Ruth E.
    Lozupone, Catherine A.
    McDonald, Daniel
    Muegge, Brian D.
    Pirrung, Meg
    Reeder, Jens
    Sevinsky, Joel R.
    Tumbaugh, Peter J.
    Walters, William A.
    Widmann, Jeremy
    Yatsunenko, Tanya
    Zaneveld, Jesse
    Knight, Rob
    [J]. NATURE METHODS, 2010, 7 (05) : 335 - 336
  • [6] The intestinal microbiota and its modulation for Salmonella control in chickens
    Chambers, James R.
    Gong, Joshua
    [J]. FOOD RESEARCH INTERNATIONAL, 2011, 44 (10) : 3149 - 3159
  • [7] Clark D.P., 1996, Escherichia coli and Salmonella : cellular and molecular biology, P343
  • [8] Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
    DeSantis, T. Z.
    Hugenholtz, P.
    Larsen, N.
    Rojas, M.
    Brodie, E. L.
    Keller, K.
    Huber, T.
    Dalevi, D.
    Hu, P.
    Andersen, G. L.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) : 5069 - 5072
  • [9] Dhama K., 2014, GROWTH PROMOTERS NOV, P129
  • [10] The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon
    Donohoe, Dallas R.
    Garge, Nikhil
    Zhang, Xinxin
    Sun, Wei
    O'Connell, Thomas M.
    Bunger, Maureen K.
    Bultman, Scott J.
    [J]. CELL METABOLISM, 2011, 13 (05) : 517 - 526