Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation

被引:21
|
作者
Lee, Joonnyong [1 ]
Sohn, JangJay [1 ]
Park, Jonghyun [1 ]
Yang, SeungMan [1 ]
Lee, Saram [2 ]
Kim, Hee Chan [3 ,4 ]
机构
[1] Seoul Natl Univ, Grad Sch, Interdisciplinary Program Bioengn, Suite 321,Bldg 8,101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ Hosp, Biomed Res Inst, Suite 1203-1,71 Daehak Ro, Seoul 03082, South Korea
[3] Seoul Natl Univ, Dept Biomed Engn, Coll Med, Suite 11315,101 Daehak Ro, Seoul 03080, South Korea
[4] Seoul Natl Univ, Inst Med & Biol Engn, Med Res Ctr, Suite 11315,101 Daehak Ro, Seoul 03080, South Korea
来源
BIOMEDICAL ENGINEERING ONLINE | 2018年 / 17卷
基金
新加坡国家研究基金会;
关键词
Blood pressure; Pulse pressure; Stroke volume; Pre-ejection period; Pulse transit time; Ubiquitous healthcare; TOTAL ARTERIAL COMPLIANCE; CORONARY-HEART-DISEASE; CARDIOVASCULAR RISK; ARRIVAL-TIME; HYPERTENSION; BALLISTOCARDIOGRAM; VARIABILITY; RATIO; ABNORMALITIES; POPULATION;
D O I
10.1186/s12938-018-0510-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: Non-invasive continuous blood pressure monitors are of great interest to the medical community due to their value in hypertension management. Recently, studies have shown the potential of pulse pressure as a therapeutic target for hypertension, but not enough attention has been given to non-invasive continuous monitoring of pulse pressure. Although accurate pulse pressure estimation can be of direct value to hypertension management and indirectly to the estimation of systolic blood pressure, as it is the sum of pulse pressure and diastolic blood pressure, only a few inadequate methods of pulse pressure estimation have been proposed. Methods: We present a novel, non-invasive blood pressure and pulse pressure estimation method based on pulse transit time and pre-ejection period. Pre-ejection period and pulse transit time were measured non-invasively using electrocardiogram, seismocardiogram, and photoplethysmogram measured from the torso. The proposed method used the 2-element Windkessel model to model pulse pressure with the ratio of stroke volume, approximated by pre-ejection period, and arterial compliance, estimated by pulse transit time. Diastolic blood pressure was estimated using pulse transit time, and systolic blood pressure was estimated as the sum of the two estimates. The estimation method was verified in 11 subjects in two separate conditions with induced cardiovascular response and the results were compared against a reference measurement and values obtained from a previously proposed method. Results: The proposed method yielded high agreement with the reference (pulse pressure correlation with reference R >= 0.927, diastolic blood pressure correlation with reference R >= 0.854, systolic blood pressure correlation with reference R >= 0.914) and high estimation accuracy in pulse pressure (mean root-mean-squared error <= 3.46 mmHg) and blood pressure (mean root-mean-squared error <= 6.31 mmHg for diastolic blood pressure and <= 8.41 mmHg for systolic blood pressure) over a wide range of hemodynamic changes. Conclusion: The proposed pulse pressure estimation method provides accurate estimates in situations with and without significant changes in stroke volume. The proposed method improves upon the currently available systolic blood pressure estimation methods by providing accurate pulse pressure estimates.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Enabling Wearable Pulse Transit Time-Based Blood Pressure Estimation for Medically Underserved Areas and Health Equity: Comprehensive Evaluation Study
    Ganti, Venu
    Carek, Andrew M.
    Jung, Hewon
    Srivatsa, Adith, V
    Cherry, Deborah
    Johnson, Levather Neicey
    Inan, Omer T.
    JMIR MHEALTH AND UHEALTH, 2021, 9 (08):
  • [22] Regression-forests-based Estimation of Blood Pressure using the Pulse Transit Time Obtained by Facial Photoplethysmogram
    Yoshioka, Mototaka
    Bounyong, Souksakhone
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 3248 - 3253
  • [23] Continuous and Noninvasive Blood Pressure Estimation by Two-Sensor Measurement of Pulse Transit Time
    Rasool, Anam
    Rafiq, Muqudas
    Nasir, Aisha
    Kashif, Faisal M.
    2018 14TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET), 2018,
  • [24] Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure
    Zhang, Guanqun
    Gao, Mingwu
    Xu, Da
    Olivier, N. Bari
    Mukkamala, Ramakrishna
    JOURNAL OF APPLIED PHYSIOLOGY, 2011, 111 (06) : 1681 - 1686
  • [25] Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates
    Feng, Jingjie
    Huang, Zhongyi
    Zhou, Congcong
    Ye, Xuesong
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2018, 41 (02) : 403 - 413
  • [26] Prototype of Wearable Device for Blood Pressure using Pulse Transit Time
    Bunkum, Manao
    Wanluk, Nutthanan
    Visitsattapongse, Sarinporn
    13TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2021), 2018,
  • [27] Pulse Transit Time and Blood Pressure During Cardiopulmonary Exercise Tests
    Wibmer, T.
    Doering, K.
    Kropf-Sanchen, C.
    Ruediger, S.
    Blanta, I.
    Stoiber, K. M.
    Rottbauer, W.
    Schumann, C.
    PHYSIOLOGICAL RESEARCH, 2014, 63 (03) : 287 - 296
  • [28] A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time
    Buxi, Dilpreet
    Redoute, Jean-Michel
    Yuce, Mehmet Rasit
    PHYSIOLOGICAL MEASUREMENT, 2015, 36 (03) : R1 - R26
  • [29] Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography
    Toan Huu Huynh
    Jafari, Roozbeh
    Chung, Wan-Young
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (04) : 967 - 976
  • [30] Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method
    Gesche, Heiko
    Grosskurth, Detlef
    Kuechler, Gert
    Patzak, Andreas
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2012, 112 (01) : 309 - 315