Hyperbolic equations with non-analytic coefficients

被引:26
作者
Kinoshita, Tamotu
Spagnolo, Sergio [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
[2] Univ Pisa, Dept Math L Tonelli, I-56127 Pisa, Italy
关键词
D O I
10.1007/s00208-006-0009-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Cauchy problem for a hyperbolic, homogeneous equation with C-infinity coefficients depending on time, is well posed in every Gevrey class, although in general it is not well-posed in C-infinity, provided the characteristic roots satisfy the condition lambda(i)(t)(2) +lambda(j)(t)(2) <= M(lambda(i)(t) -lambda(j)(t))(2) (i not equal j).
引用
收藏
页码:551 / 569
页数:19
相关论文
共 15 条
[1]  
[Anonymous], 1983, ANN SCUOLA NORM-SCI
[2]  
Bronshtein M. D., 1982, T MOSCOW MATH SOC, V1, P87
[3]   AN EXAMPLE OF A WEAKLY HYPERBOLIC CAUCHY-PROBLEM NOT WELL POSED IN C-INFINITY [J].
COLOMBINI, F ;
SPAGNOLO, S .
ACTA MATHEMATICA, 1982, 148 :243-253
[4]   Well-posedness in C∞ for some weakly hyperbolic equations [J].
Colombini, F ;
Orrú, N .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (03) :399-420
[5]  
D'Ancona P, 1998, B UNIONE MAT ITAL, V1B, P169
[6]  
IVRII V, 1993, ENCYCL MATH SCI, V30, P149
[8]   LINEAR KOVALEVSKIAN SYSTEMS WITH TIME-DEPENDENT COEFFICIENTS [J].
JANNELLI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (14) :1373-1406
[9]  
JANNELLI E, 2002, P LECT HELD M HYP EQ
[10]   Gevrey wellposedness of the Cauchy problem for the hyperbolic equations of third order with coefficients depending only on time [J].
Kinoshita, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1998, 34 (03) :249-270