Melt-state polymer chain dimensions as a function of temperature

被引:31
|
作者
Krishnamoorti, R
Graessley, WW
Zirkel, A
Richter, D
Hadjichristidis, N
Fetters, LJ
Lohse, DJ
机构
[1] ExxonMobil Res & Engn Co, Corp Strateg Res Labs, Annandale, NJ 08801 USA
[2] Univ Athens, Dept Chem, Athens 15771, Greece
[3] Forschungszentrum Julich, Inst Solid State Res, D-52425 Julich, Germany
[4] Princeton Univ, Dept Chem Engn, Princeton, NJ 08551 USA
关键词
entanglement molecular weights; packing length; unperturbed chain dimensions; plateau moduli; rheology; neutron scattering;
D O I
10.1002/polb.10231
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The unperturbed chain dimensions (<R-2>(o)/M) of cis/trans-1,4-polyisoprene, a near-atactic poly(methyl methacrylate), and atactic polyolefins were measured as a function of temperature in the melt state via small-angle neutron scattering (SANS). The polyolefinic materials were derived from polydienes or polystyrene via hydrogenation or deuteration and represent structures not encountered commercially. The parent polymers were prepared via lithium-based anionic polymerizations in cyclohexane with, in some cases, a polymer microstructure modifier present. The polyolefins retained the near-monodisperse molecular weight distributions exhibited by the precursor materials. The melt SANS-based chain dimension data allowed the evaluation of the temperature coefficients [dln <R-2>(o)/dT(kappa)] for these polymers. The evaluated polymers obeyed the packing length (p)-based expressions of the plateau modulus, G(N)(o) = kT/n(t)(2)p(3) (MPa), and the entanglement molecular weight, M-e = rhoN(a)n(t)(2)p(3) (g mol(-1)), where n(t) denotes the number (similar to21) of entanglement strands in a cube with the dimensions of the reptation tube diameter (d(t)) and p is the chain density. The product n(t)(2)p(3) is the displaced volume (V-e) of an entanglement that is also expressible as pd(t)(2) or kT/G(N)(o). (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:1768 / 1776
页数:9
相关论文
共 50 条
  • [21] A computer simulation of the effect of temperature on melt chain dimensions of random short chain branched polyethylene
    Ramos, Javier
    Vega, Juan F.
    Martinez-Salazar, Javier
    POLYMER, 2021, 225 (225)
  • [23] A Review of Online Real-Time Process Analyses of Melt-State Polymer Using the Near-Infrared Spectroscopy and Chemometrics
    Watari, Masahiro
    APPLIED SPECTROSCOPY REVIEWS, 2014, 49 (06) : 462 - 491
  • [24] Phenoxy/Hytrel blends. I. Miscibility and melt-state reactions
    Gaztelumendi, M
    Nazabal, J
    JOURNAL OF APPLIED POLYMER SCIENCE, 1998, 70 (01) : 185 - 193
  • [25] Dynamics of a polymer chain in a melt
    Hagita, K
    Takano, H
    MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 : 382 - 383
  • [26] ON THE MORPHOLOGY DETERMINATION OF HETEROGENEOUS BLENDS BY MELT-STATE DYNAMIC-MECHANICAL SPECTROSCOPY
    EKLIND, H
    MAURER, FHJ
    POLYMER NETWORKS & BLENDS, 1995, 5 (01): : 35 - 45
  • [27] Polymer chain winding in the melt
    Richardson, DG
    Abrams, CF
    MACROMOLECULES, 2006, 39 (06) : 2330 - 2339
  • [28] Melt-state dynamic pressure engineered Polybutene-1 with form I crystals
    Wei, Xingzhao
    Qu, Yuntao
    Jiang, Haowei
    Huang, Zhao-Xia
    Qu, Jin-Ping
    POLYMER, 2022, 256
  • [29] CONNECTION BETWEEN POLYMER MOLECULAR-WEIGHT, DENSITY, CHAIN DIMENSIONS, AND MELT VISCOELASTIC PROPERTIES
    FETTERS, LJ
    LOHSE, DJ
    RICHTER, D
    WITTEN, TA
    ZIRKEL, A
    MACROMOLECULES, 1994, 27 (17) : 4639 - 4647
  • [30] Melt-state miscibility of poly(ethylene-co-1-octene) and linear polyethylene
    Shin, Kyusoon
    Nam, Byeong Uk
    Bang, Joona
    Jho, Jae Young
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 107 (04) : 2584 - 2587