Polymer-Clay Nanocomposite Solid-State Electrolyte with Selective Cation Transport Boosting and Retarded Lithium Dendrite Formation

被引:75
作者
Jeon, Young Min [1 ]
Kim, Seulwoo [2 ,3 ]
Lee, Minhwan [2 ,3 ]
Lee, Won Bo [2 ,3 ]
Park, Jong Hyeok [1 ]
机构
[1] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Inst Chem Proc, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
lithium‐ ion batteries; montmorillonite; organic clays; polymer electrolytes; semi‐ IPN structures; ELECTROCHEMICAL PROPERTIES; IONIC-CONDUCTIVITY; POLY(ETHYLENE OXIDE); COMPOSITE; MONTMORILLONITE; CHALLENGES; COMPLIANT;
D O I
10.1002/aenm.202003114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Commercialized lithium-ion batteries (LIBs) with a liquid electrolyte have a high potential for combustion or explosion. The use of solid electrolytes in LIBs is a promising way to overcome the drawbacks of conventional liquid electrolyte-based systems, but they generally have a lower ionic conductivity and lithium ion mobility. Here, a UV-crosslinked composite polymer-clay electrolyte (U-CPCE) that is composed of a durable semi-interpenetrating polymer network (semi-IPN) ion transportive matrix (ETPTA/PVdF-HFP) and 2D ultrathin clay nanosheets that are fabricated by a one-step in situ UV curing method, are reported. The U-CPCE exhibits robust and flexible properties with an ionic conductivity of more than 10(-3) S cm(-1) at room temperature with the help of exfoliated clay nanosheets. As a result, the U-CPCE-based LIBs show an initial discharge capacity of 152 mAh g(-1) (at 0.2 C for a LiCoO2 half-cell), which is comparable to that of conventional liquid electrolyte-based cells. In addition, they show excellent cycling performance (96% capacity retention after 200 cycles at 0.5 C) due to a significantly enhanced Li+ transference number (t(Li+) = 0.78) and inhibition of lithium dendrite formation on the lithium metal surface. Furthermore, a molecular dynamics (MD) study is conducted to elucidate the mechanism of improving ionic conductivity. The U-CPCE design can offer opportunities for future all-solid-state Li-ion batteries.
引用
收藏
页数:10
相关论文
共 60 条
[1]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[2]   Implementing molecular dynamics on hybrid high performance computers - short range forces [J].
Brown, W. Michael ;
Wang, Peng ;
Plimpton, Steven J. ;
Tharrington, Arnold N. .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (04) :898-911
[3]   CL&P: A generic and systematic force field for ionic liquids modeling [J].
Canongia Lopes, Jose N. ;
Padua, Agilio A. H. .
THEORETICAL CHEMISTRY ACCOUNTS, 2012, 131 (03) :1-11
[4]   The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay [J].
Chen, HW ;
Chang, FC .
POLYMER, 2001, 42 (24) :9763-9769
[5]   Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay [J].
Chen, HW ;
Lin, TP ;
Chang, FC .
POLYMER, 2002, 43 (19) :5281-5288
[6]   Solid-state electrolyte nanocomposites based on poly(ethylene oxide), poly(oxypropylene) diamine, mineral clay and lithium perchlorate [J].
Chen, HW ;
Chiu, CY ;
Wu, HD ;
Shen, IW ;
Chang, FC .
POLYMER, 2002, 43 (18) :5011-5016
[7]   Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries [J].
Chen, Long ;
Li, Wenxin ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (28)
[8]   Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition [J].
Chen, Wei ;
Hu, Yin ;
Lv, Weiqiang ;
Lei, Tianyu ;
Wang, Xianfu ;
Li, Zhenghan ;
Zhang, Miao ;
Huang, Jianwen ;
Du, Xinchuan ;
Yan, Yichao ;
He, Weidong ;
Liu, Chen ;
Liao, Min ;
Zhang, Wanli ;
Xiong, Jie ;
Yan, Chenglin .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery [J].
Chen-Yang, Y. W. ;
Chen, Y. T. ;
Chen, H. C. ;
Lin, W. T. ;
Tsai, C. H. .
POLYMER, 2009, 50 (13) :2856-2862
[10]   Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems [J].
Cho, Yoon-Gyo ;
Hwang, Chihyun ;
Cheong, Do Sol ;
Kim, Young-Soo ;
Song, Hyun-Kon .
ADVANCED MATERIALS, 2019, 31 (20)