Stability of relative equilibria of multidimensional rigid body

被引:5
|
作者
Izosimov, Anton [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
[2] Natl Res Univ, Higher Sch Econ, Moscow 101978, Russia
关键词
stability; free rigid body; multidimensional rigid body; bi-Hamiltonian structures; COMPATIBLE POISSON BRACKETS; TOPOLOGY;
D O I
10.1088/0951-7715/27/6/1419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is a classical result of Euler that the rotation of a torque-free three-dimensional rigid body about the short or the long axis is stable, whereas the rotation about the middle axis is unstable. This result is generalized to the case of a multidimensional body.
引用
收藏
页码:1419 / 1443
页数:25
相关论文
共 50 条
  • [31] ON THE STABILITY OF RELATIVE EQUILIBRIA
    MADDOCKS, JH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1991, 46 (1-2) : 71 - 99
  • [32] On the stability of relative equilibria
    Maddocks, John H.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1991, 46 (1-2): : 71 - 99
  • [33] Linear stability of elliptic relative equilibria of restricted four -body problem
    Liu, Bowen
    Zhou, Qinglong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) : 4751 - 4798
  • [34] Correction to: Stability of the Euler resting N-body relative equilibria
    D. J. Scheeres
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [35] Linear stability of relative equilibria in the charged three-body problem
    Alfaro, Felipe
    Perez-Chavela, Emesto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (07) : 1923 - 1944
  • [36] SPECTRAL STABILITY OF RELATIVE EQUILIBRIA
    Howard, James E.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 48 (03): : 267 - 288
  • [37] Stability of Hamiltonian relative equilibria
    Ortega, JP
    Ratiu, TS
    NONLINEARITY, 1999, 12 (03) : 693 - 720
  • [38] Persistence and stability of relative equilibria
    Montaldi, J
    NONLINEARITY, 1997, 10 (02) : 449 - 466
  • [39] Stability of Euler-Type Relative Equilibria in the Curved Three Body Problem
    Perez-Chavela, Ernesto
    Sanchez Cerritos, Juan Manuel
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 65 - 69
  • [40] Stability of Euler-Type Relative Equilibria in the Curved Three Body Problem
    Perez-Chavela, Ernesto
    Sanchez Cerritos, Juan Manuel
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 59 - 63