Synthesis of Intelligent Antenna Array Using Radial Basis Function Networks

被引:0
|
作者
Sarevska, Maja [1 ]
Milovanovic, Bratislav [1 ]
Stankovic, Zoran [1 ]
机构
[1] Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia
关键词
Intelligent antenna array; neural computing; signal processing; Radial Basis Function Networks; APPROXIMATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers antenna array synthesis for linear amplitude and phase distribution of the element excitations. Following the concept of human brain, large number of neurons is assumed and radial basis neural network with exact solution is used. Detailed analyze of performances are presented for different values of the number of training samples and different number of antenna elements. First regular antenna array is presented and then the investigation is broadened to linear amplitude distribution. A small mean error of the amplitude and phase at the output of the network are concluded, showing the ability of the network to perform the synthesis. This analyze is strong basis for guidance in a future synthesis of a more irregular antenna array.
引用
收藏
页码:521 / 525
页数:5
相关论文
共 50 条
  • [41] Advanced radial basis function networks
    Yjao, Weimin
    Mohamed, Magdi A.
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 209 - 214
  • [42] Constraint Antenna Array BeamformingBased on Multi-objective Radial Basis Function Neural Network
    Zhao, Zhonghui
    Zhao, Huiling
    Zheng, Mingxuan
    2017 IEEE SIXTH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2017,
  • [43] Performance of radial-basis function networks for direction of arrival estimation with antenna arrays
    ElZooghby, AH
    Christodoulou, CG
    Georgiopoulos, M
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (11) : 1611 - 1617
  • [44] Nonlinear function learning and classification using optimal radial basis function networks
    Krzyzak, A
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, 2001, 2123 : 217 - 225
  • [45] Local volatility function approximation using reconstructed radial basis function networks
    Kim, Bo-Hyun
    Lee, Daewon
    Lee, Jaewook
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 3, PROCEEDINGS, 2006, 3973 : 524 - 530
  • [46] Nonlinear function learning using radial basis function networks:: Convergence and rates
    Krzyzak, Adam
    Schaefer, Dominik
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 101 - +
  • [47] A rapid response intelligent diagnosis network using radial basis function network
    Wen, GR
    Qu, LS
    Zhang, XI
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 508 - 513
  • [48] Radar target classification based on radial basis function and modified radial basis function networks
    Liu, GS
    Wang, YH
    Yang, CL
    Zhou, DQ
    ICR '96 - 1996 CIE INTERNATIONAL CONFERENCE OF RADAR, PROCEEDINGS, 1996, : 208 - 211
  • [49] Chess Position Evaluation Using Radial Basis Function Neural Networks
    Kagkas, Dimitrios
    Karamichailidou, Despina
    Alexandridis, Alex
    COMPLEXITY, 2023, 2023
  • [50] Predicting marital dissolutions using Radial Basis Function Neural Networks
    Guillen, A.
    Tovar, C.
    Herrera, L. J.
    Pomares, H.
    Gonzalez, J.
    Guillen, J. F.
    Rojas, I.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,