In Situ Synthesis of Sn-Beta Zeolite Nanocrystals for Glucose to Hydroxymethylfurfural (HMF)

被引:32
作者
Saenluang, Kachaporn [1 ]
Thivasasith, Anawat [1 ]
Dugkhuntod, Pannida [1 ]
Pornsetmetakul, Peerapol [1 ]
Salakhum, Saros [1 ]
Namuangruk, Supawadee [2 ]
Wattanakit, Chularat [1 ]
机构
[1] Vidyasirimedhi Inst Sci & Technol, Sch Energy Sci & Engn, Dept Chem & Biomol Engn, Rayong 21210, Thailand
[2] Natl Sci & Technol Dev Agcy, Natl Nanotechnol Ctr NANOTEC, Pathum Thai 12120, Thailand
关键词
in-situ synthesis; Sn-Beta zeolite; isomorphous substitution; glucose; HMF; CONVERSION; ACID; ISOMERIZATION; CATALYST; DEHYDRATION; FRUCTOSE; CHLORIDE; ZSM-5;
D O I
10.3390/catal10111249
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Sn substituted Beta nanocrystals have been successfully synthesized by in-situ hydrothermal process with the aid of cyclic diquaternary ammonium (CDM) as the structure-directing agent (SDA). This catalyst exhibits a bifunctional catalytic capability for the conversion of glucose to hydroxymethylfurfural (HMF). The incorporated Sn acting as Lewis acid sites can catalyze the isomerization of glucose to fructose. Subsequently, the Bronsted acid function can convert fructose to HMF via dehydration. The effects of Sn amount, zeolite type, reaction time, reaction temperature, and solvent on the catalytic performances of glucose to HMF, were also investigated in the detail. Interestingly, the conversion of glucose and the HMF yield over 0.4 wt% Sn-Beta zeolite nanocrystals using dioxane/water as a solvent at 120 degrees C for 24 h are 98.4% and 42.0%, respectively. This example illustrates the benefit of the in-situ synthesized Sn-Beta zeolite nanocrystals in the potential application in the field of biomass conversion.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 47 条
[1]   Mesoporous MEL, BEA, and FAU zeolite crystals obtained by in situ formation of carbon template over metal nanoparticles [J].
Abildstrom, Jacob Oskar ;
Ali, Zahra Nasrudin ;
Mentzel, Uffe Vie ;
Mielby, Jerrik ;
Kegnaes, Soren ;
Kegnaes, Marina .
NEW JOURNAL OF CHEMISTRY, 2016, 40 (05) :4223-4227
[2]   Preparation of Sn-β-zeolite via immobilization of Sn/choline chloride complex for glucose-fructose isomerization reaction [J].
Bayu, Asep ;
Karnjanakom, Surachai ;
Kusakabe, Katsuki ;
Abudula, Abuliti ;
Guan, Guoqing .
CHINESE JOURNAL OF CATALYSIS, 2017, 38 (03) :426-433
[3]   Efficient glucose dehydration to HMF onto Nb-BEA catalysts [J].
Candu, Natalia ;
El Fergani, Magdi ;
Verziu, Marian ;
Cojocaru, Bogdan ;
Jurca, Bogdan ;
Apostol, Nicoleta ;
Teodorescu, Cristian ;
Parvulescu, Vasile I. ;
Coman, Simona M. .
CATALYSIS TODAY, 2019, 325 :109-116
[4]   The synthesis of a hierarchically porous BEA zeolite via pseudomorphic crystallization [J].
Choi, Minkee ;
Na, Kyungsu ;
Ryoo, Ryong .
CHEMICAL COMMUNICATIONS, 2009, (20) :2845-2847
[5]   Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations [J].
Corma, A ;
Nemeth, LT ;
Renz, M ;
Valencia, S .
NATURE, 2001, 412 (6845) :423-425
[6]   Lewis Acid Catalysis Confined in Zeolite Cages as a Strategy for Sustainable Heterogeneous Hydration of Epoxides [J].
Dai, Weili ;
Wang, Chuanming ;
Tang, Bo ;
Wu, Guangjun ;
Guan, Naijia ;
Xie, Zaiku ;
Hunger, Michael ;
Li, Landong .
ACS CATALYSIS, 2016, 6 (05) :2955-2964
[7]   Hierarchical Sn-MFI zeolites prepared by facile top-down methods for sugar isomerisation [J].
Dapsens, Pierre Y. ;
Mondelli, Cecilia ;
Jagielski, Jakub ;
Hauert, Roland ;
Perez-Ramirez, Javier .
CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4 (08) :2302-2311
[8]   Snβ-zeolite catalyzed oxido-reduction cascade chemistry with biomass-derived molecules [J].
Dijkmans, J. ;
Schutyser, W. ;
Dusselier, M. ;
Sels, B. F. .
CHEMICAL COMMUNICATIONS, 2016, 52 (40) :6712-6715
[9]   Productive sugar isomerization with highly active Sn in dealuminated β zeolites [J].
Dijkmans, Jan ;
Gabriels, Dries ;
Dusselier, Michiel ;
de Clippel, Filip ;
Vanelderen, Pieter ;
Houthoofd, Kristof ;
Malfliet, Annelies ;
Pontikes, Yiannis ;
Sels, Bert F. .
GREEN CHEMISTRY, 2013, 15 (10) :2777-2785
[10]  
Fan XL, 2020, SUSTAINABLE NANOSCALE ENGINEERING: FROM MATERIALS DESIGN TO CHEMICAL PROCESSING, P115, DOI 10.1016/B978-0-12-814681-1.00005-9