Direct and indirect excitons in two-dimensional covalent organic frameworks†

被引:2
作者
Sun, Shan [1 ]
Ma, Hui-zhong [1 ]
Zhang, Xiao [1 ]
Ma, Yu-chen [1 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic frameworks; Luminescence; Excitons; Many-body Green's; function theory; BAND-STRUCTURE CALCULATIONS; BETHE-SALPETER-EQUATION; SEMICONDUCTORS; EXCITATIONS; ENERGIES; NITRIDE; RANGE; IMINE; SI;
D O I
10.1063/1674-0068/cjcp2001003
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Highly luminescent bulk two-dimensional covalent organic frameworks (COFs) attract much attention recently. Origin of their luminescence and their large Stokes shift is an open question. After first-principles calculations on two kinds of COFs using the GW method and Bethe-Salpeter equation, we find that monolayer COF has a direct band gap, while bulk COF is an indirect band-gap material. The calculated optical gap and optical absorption spectrum for the direct excitons of bulk COF agree with the experiment. However, the calculated energy of the indirect exciton, in which the photoelectron and the hole locate at the conduction band minimum and the valence band maximum of bulk COF respectively, is too low compared to the fluorescence spectrum in experiment. This may exclude the possible assistance of phonons in the luminescence of bulk COF. Luminescence of bulk COF might result from exciton recombination at the defects sites. The indirect band-gap character of bulk COF originates from its AA-stacked conformation. If the conformation is changed to the AB-stacked one, the band gap of COF becomes direct which may enhance the luminescence.
引用
收藏
页码:569 / 577
页数:9
相关论文
共 59 条
[1]  
AAH A., 2019, BRIT J ANAESTH, V122, pe136, DOI DOI 10.1103/PHYSREVLETT.122.067401
[2]  
AAH A., 2019, BRIT J ANAESTH, V122, pe136, DOI DOI 10.1103/PhysRevLett.122.187401
[3]  
Agrawal R, 2017, ACTA OPHTHALMOL, V95, pe597, DOI DOI 10.1103/PhysRevB.95.035125
[4]   Layer-Stacking-Driven Fluorescence in a Two-Dimensional Imine-Linked Covalent Organic Framework [J].
Albacete, Pablo ;
Martinez, Jose I. ;
Li, Xing ;
Lopez-Moreno, Alejandro ;
Mena-Hernando, Soda ;
Platero-Prats, Ana E. ;
Montoro, Carmen ;
Loh, Kian Ping ;
Perez, Emilio M. ;
Zamora, Felix .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (40) :12922-12929
[5]   Near-unity photoluminescence quantum yield in MoS2 [J].
Amani, Matin ;
Lien, Der-Hsien ;
Kiriya, Daisuke ;
Xiao, Jun ;
Azcatl, Angelica ;
Noh, Jiyoung ;
Madhvapathy, Surabhi R. ;
Addou, Rafik ;
Santosh, K. C. ;
Dubey, Madan ;
Cho, Kyeongjae ;
Wallace, Robert M. ;
Lee, Si-Chen ;
He, Jr-Hau ;
Ager, Joel W., III ;
Zhang, Xiang ;
Yablonovitch, Eli ;
Javey, Ali .
SCIENCE, 2015, 350 (6264) :1065-1068
[6]  
[Anonymous], 2018, MED BALTIMORE, V97, pe9654, DOI DOI 10.1103/PhysRevB.97.075121
[7]   H2 Evolution with Covalent Organic Framework Photocatalysts [J].
Banerjee, Tanmay ;
Gottschling, Kerstin ;
Savasci, Goekcen ;
Ochsenfeld, Christian ;
Lotsch, Bettina V. .
ACS ENERGY LETTERS, 2018, 3 (02) :400-409
[8]   The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges [J].
Blase, Xavier ;
Duchemin, Ivan ;
Jacquemin, Denis .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (03) :1022-1043
[9]   Theory of phonon-assisted luminescence in solids: Application to hexagonal boron nitride [J].
Cannuccia, E. ;
Monserrat, B. ;
Attaccalite, C. .
PHYSICAL REVIEW B, 2019, 99 (08)
[10]   Hexagonal boron nitride is an indirect bandgap semiconductor [J].
Cassabois, G. ;
Valvin, P. ;
Gil, B. .
NATURE PHOTONICS, 2016, 10 (04) :262-+