A computational method for computing an Alzheimer's disease progression score; experiments and validation with the ADNI data set

被引:13
作者
Jedynak, Bruno M. [1 ,2 ,3 ]
Liu, Bo [1 ]
Lang, Andrew [4 ]
Gel, Yulia [1 ,5 ]
Prince, Jerry L. [4 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
[3] Univ Sci & Technol Lille, Lab Math Paul Painleve, Villeneuve Dascq, France
[4] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[5] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; Biomarkers; Progression score; Sampling from the residuals;
D O I
10.1016/j.neurobiolaging.2014.03.043
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Understanding the time-dependent changes of biomarkers related to Alzheimer's disease (AD) is a key to assessing disease progression and measuring the outcomes of disease-modifying therapies. In this article, we validate an AD progression score model which uses multiple biomarkers to quantify the AD progression of subjects following 3 assumptions: (1) there is a unique disease progression for all subjects; (2) each subject has a different age of onset and rate of progression; and (3) each biomarker is sigmoidal as a function of disease progression. Fitting the parameters of this model is a challenging problem which we approach using an alternating least squares optimization algorithm. To validate this optimization scheme under realistic conditions, we use the Alzheimer's Disease Neuroimaging Initiative cohort. With the help of Monte Carlo simulations, we show that most of the global parameters of the model are tightly estimated, thus enabling an ordering of the biomarkers that fit the model well, ordered as: the Rey auditory verbal learning test with 30 minutes delay, the sum of the 2 lateral hippocampal volumes divided by the intracranial volume, followed (by the clinical dementia rating sum of boxes score and the mini-mental state examination score) in no particular order and at last the AD assessment scalecognitive subscale. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:S178 / S184
页数:7
相关论文
共 18 条
  • [1] [Anonymous], 2013, Longitudinal data analysis: A practical guide for researchers in aging, health, and social sciences, DOI DOI 10.4324/9780203814208
  • [2] Bootstraps for time series
    Bühlmann, P
    [J]. STATISTICAL SCIENCE, 2002, 17 (01) : 52 - 72
  • [3] The dynamics of Alzheimer's disease biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort
    Caroli, A.
    Frisoni, G. B.
    [J]. NEUROBIOLOGY OF AGING, 2010, 31 (08) : 1263 - 1274
  • [4] Chernick MR, 2007, Bootstrap methods: A guide for practitioners and researchers
  • [5] Graham JW., 2012, Missing data: Analysis and design, DOI DOI 10.1007/978-1-4614-4018-5
  • [6] Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
    Jack, Clifford R., Jr.
    Knopman, David S.
    Jagust, William J.
    Shaw, Leslie M.
    Aisen, Paul S.
    Weiner, Michael W.
    Petersen, Ronald C.
    Trojanowski, John Q.
    [J]. LANCET NEUROLOGY, 2010, 9 (01) : 119 - 128
  • [7] A computational neurodegenerative disease progression score: Method and results with the Alzheimer's disease neuroimaging initiative cohort
    Jedynak, Bruno M.
    Lang, Andrew
    Liu, Bo
    Katz, Elyse
    Zhang, Yanwei
    Wyman, Bradley T.
    Raunig, David
    Jedynak, C. Pierre
    Caffo, Brian
    Prince, Jerry L.
    [J]. NEUROIMAGE, 2012, 63 (03) : 1478 - 1486
  • [8] K L, 1944, Q. Appl. Math., V2, P164, DOI [10.1090/QAM/10666, 10.1090/qam/10666]
  • [9] Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer's disease
    Morris, JC
    Price, JL
    [J]. JOURNAL OF MOLECULAR NEUROSCIENCE, 2001, 17 (02) : 101 - 118
  • [10] Towards a Dynamic Biomarker Model in Alzheimer's Disease
    Mouiha, Abderazzak
    Duchesne, Simon
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2012, 30 (01) : 91 - 100