Spreading of spiral spectrum of Bessel-Gaussian beam in non-Kolmogorov turbulence

被引:52
作者
Ou, Jun [1 ]
Jiang, Yuesong [1 ]
Zhang, Jiahua [2 ]
Tang, Hua [1 ]
He, Yuntao [1 ]
Wang, ShuaiHui [1 ]
Liao, Juan [3 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing 100094, Peoples R China
[3] Huichang Expt Sch, Ganzhou 342600, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Spiral spectrum; Bessel-Gaussian beam; Non-Kolmogorov turbulence; Channel capacity; ORBITAL ANGULAR-MOMENTUM; ATMOSPHERIC-TURBULENCE; OPTICAL VORTICES; VORTEX BEAMS; PROPAGATION; STATES;
D O I
10.1016/j.optcom.2013.12.069
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The analytical formulas for the spiral spectrum of Bessel-Gaussian (BG) beam and the channel capacity of a communication system based on orbital angular momentum (DAM) in non-Kolmogorov turbulence have been derived. The influence of the azimuthal index, wavelength, exponent parameter alpha, inner scale and outer scale on spiral spectrum is investigated. Numerical results reveal that a spiral spectrum of BG beam in non-Kolmogorov turbulence is more affected by turbulence with larger azimuthal index, shorter wavelength, smaller inner scale and larger outer scale. It is demonstrated that the spiral spectrum also depends on the propagation distance and structure constant. The spiral spectrum of BG beam in non-Kolmogorov turbulence spreads significantly with the increasing of exponent parameter alpha and spreads slightly after reaching a maximum point. It is showed that the variation of channel capacity of the DAM-based communication system, with respect to parameter alpha, has the same trend as the spiral spectrum. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 28 条
  • [1] Andrews L. C., 2005, SPIE, V2nd, DOI DOI 10.1117/3.626196
  • [2] Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link
    Anguita, Jaime A.
    Neifeld, Mark A.
    Vasic, Bane V.
    [J]. APPLIED OPTICS, 2008, 47 (13) : 2414 - 2429
  • [3] Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere
    Chen, Baosuan
    Chen, Ziyang
    Pu, Jixiong
    [J]. OPTICS AND LASER TECHNOLOGY, 2008, 40 (06) : 820 - 827
  • [4] Propagation of vector vortex beams through a turbulent atmosphere
    Cheng, Wen
    Haus, Joseph W.
    Zhan, Qiwen
    [J]. OPTICS EXPRESS, 2009, 17 (20): : 17829 - 17836
  • [5] Intensity fluctuations in J-Bessel-Gaussian beams of all orders propagating in turbulent atmosphere
    Eyyuboglu, H. T.
    Sermutlu, E.
    Baykal, Y.
    Cai, Y.
    Korotkova, O.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 93 (2-3): : 605 - 611
  • [6] Propagation of higher order Bessel-Gaussian beams in turbulence
    Eyyuboglu, H. T.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 88 (02): : 259 - 265
  • [7] Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media
    Eyyuboglu, Halil T.
    Baykal, Yahya
    Sermutlu, Emre
    Korotkova, Olga
    Cai, Yangjian
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (02) : 387 - 394
  • [8] Vortex beam propagation through atmospheric turbulence and topological charge conservation
    Gbur, Greg
    Tyson, Robert K.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (01) : 225 - 230
  • [9] The effect of atmospheric turbulence on entangled orbital angular momentum states
    Gopaul, C.
    Andrews, R.
    [J]. NEW JOURNAL OF PHYSICS, 2007, 9
  • [10] BESSEL-GAUSS BEAMS
    GORI, F
    GUATTARI, G
    PADOVANI, C
    [J]. OPTICS COMMUNICATIONS, 1987, 64 (06) : 491 - 495