K-NN algorithm based on neural similarity

被引:0
作者
Lazzerini, B [1 ]
Marcelloni, F [1 ]
机构
[1] Univ Pisa, Dipartimento Ingn Informaz, I-56122 Pisa, Italy
来源
2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS | 2002年
关键词
D O I
10.1109/ICAIS.2002.1048054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to present a k-nearest neighbour (k-NN) classifier based on a neural model of the similarity measure between data. After a preliminary phase of supervised learning for similarity determination, we use the neural similarity measure to guide the k-NN rule. Experiments on both synthetic and real-world data show that the similarity-based k-NN rule outperforms the Euclidean distance-based k-NN rule.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 9 条
[1]  
AHA D, 1998, FEATURE EXTRACTION C
[2]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[3]  
GOWDA KC, 1978, PATTERN RECOGN, V10, P105
[4]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323
[5]   CLUSTERING USING A SIMILARITY MEASURE BASED ON SHARED NEAR NEIGHBORS [J].
JARVIS, RA ;
PATRICK, EA .
IEEE TRANSACTIONS ON COMPUTERS, 1973, C-22 (11) :1025-1034
[6]  
Kohonen T., 1989, Self-Organization and Associative Memory, V3rd
[7]   AUTOMATED CONSTRUCTION OF CLASSIFICATIONS - CONCEPTUAL CLUSTERING VERSUS NUMERICAL TAXONOMY [J].
MICHALSKI, RS ;
STEPP, RE .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (04) :396-410
[8]  
PEDYCZ W, 2001, P 2 INT WORKSH SOFT
[9]   A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms [J].
Dietrich Wettschereck ;
David W. Aha ;
Takao Mohri .
Artificial Intelligence Review, 1997, 11 (1-5) :273-314