On normalized generating sets for GQC codes over Z2

被引:5
作者
Bae, Sunghan [1 ]
Kang, Pyung-Lyun [2 ]
Li, Chengju [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math, Daejeon 34141, South Korea
[2] Chungnam Natl Univ, Dept Math, Daejeon 34134, South Korea
[3] East China Normal Univ, Sch Comp Sci & Software Engn, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
关键词
Binary codes; Generalized quasi-cyclic codes; Dual codes; QUASI-CYCLIC CODES; STRUCTURAL-PROPERTIES;
D O I
10.1016/j.ffa.2016.11.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r(i), be positive integers and R-i = Z(2)[x]/ < x(ri) - 1 > for 1 <= i <= l. Denote R = R-1 x R-2 x ... x R-l. Generalized quasi-cyclic (GQC) code C of length (r(1), r(2),..., r(l)) over Z(2) can be viewed as Z(2) [x]-submodule of R. In this paper, we investigate the algebraic structure of C by presenting its normalized generating set. We also present a method to determine the normalized generating set of the dual code of C, which is derived from the normalized generating set of C. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 300
页数:16
相关论文
共 16 条
[1]   Z2Z4-Additive Cyclic Codes [J].
Abualrub, Taher ;
Siap, Irfan ;
Aydin, Nuh .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) :1508-1514
[2]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[3]   Quasi-cyclic codes over Z4 and some new binary codes [J].
Aydin, N ;
Ray-Chaudhuri, DK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) :2065-2069
[4]  
Borges Ayats J., 2014, ARXIV14105604V1
[5]   Generalized quasi-cyclic codes over Galois rings: structural properties and enumeration [J].
Cao, Yonglin .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2011, 22 (03) :219-233
[6]   Structural properties and enumeration of 1-generator generalized quasi-cyclic codes [J].
Cao, Yonglin .
DESIGNS CODES AND CRYPTOGRAPHY, 2011, 60 (01) :67-79
[7]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[8]   Constacyclic codes of length 2ps over Fpm + uFpm [J].
Chen, Bocong ;
Dinh, Hai Q. ;
Liu, Hongwei ;
Wang, Liqi .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 :108-130
[9]   Generalized quasi-cyclic codes: structural properties and code construction [J].
Esmaeili, M. ;
Yari, S. .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2009, 20 (02) :159-173
[10]  
Gao J., 2015, ARXIV150101360V1