Phase-isometries between normed spaces

被引:20
作者
Ilisevic, Dijana [1 ]
Omladic, Matjaz [2 ]
Turnsek, Aleksej [2 ,3 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Maritime Studies & Transport, Pot Pomorscakov 4, Portoroz 6320, Slovenia
关键词
Phase-isometry; Wigner's theorem; Isometry; Real normed space; Projective geometry; WIGNERS THEOREM; ELEMENTARY PROOF; ORTHOGONALITY;
D O I
10.1016/j.laa.2020.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be real normed spaces and f : X -> Y a surjective mapping. Then f satisfies {parallel to f (x) + f (y)parallel to, parallel to f (x) - f(y)parallel to} = {parallel to x + y parallel to, parallel to x - y parallel to}, x,y is an element of X, if and only if f is phase equivalent to a surjective linear isometry, that is, f = sigma U, where U: X -> Y is a surjective linear isometry and sigma: X -> {-1, 1}. This is a Wigner's type result for real normed spaces. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 111
页数:13
相关论文
共 18 条
[1]   On maps that preserve orthogonality in normed spaces [J].
Blanco, A. ;
Turnsek, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :709-716
[2]  
Chevalier G., 2007, Handbook of quantum logic and quantum structures, P429, DOI DOI 10.1016/B978-044452870-4/50032-7
[3]   An elementary proof of the fundamental theorem of projective geometry [J].
Faure, CA .
GEOMETRIAE DEDICATA, 2002, 90 (01) :145-151
[4]   MORPHISMS OF PROJECTIVE GEOMETRIES AND SEMILINEAR MAPS [J].
FAURE, CA ;
FROLICHER, A .
GEOMETRIAE DEDICATA, 1994, 53 (03) :237-262
[5]   An elementary proof for the non-bijective version of Wigner's theorem [J].
Geher, Gy. P. .
PHYSICS LETTERS A, 2014, 378 (30-31) :2054-2057
[6]   A new proof of Wigner's theorem [J].
Gyory, M .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :159-167
[7]  
Havlicek H., 1994, Mitt. Math., Semin. Giessen, V215, P27
[8]   Wigner's theorem in atomic Lp-spaces (p > 0) [J].
Huang, Xujian ;
Tan, Dongni .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (3-4) :411-418
[9]   On Wigner's theorem in strictly convex normed spaces [J].
Ilisevic, Dijana ;
Turnsek, Aleksej .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2020, 97 (3-4) :393-401
[10]   WIGNER'S THEOREM IN L∞(Γ)-TYPE SPACES [J].
Jia, Weike ;
Tan, Dongni .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (02) :279-284